Family Genes (family + gene)

Distribution by Scientific Domains


Selected Abstracts


Expression patterns of epiplakin1 in pancreas, pancreatic cancer and regenerating pancreas

GENES TO CELLS, Issue 7 2008
Tetsu Yoshida
Epiplakin1 (Eppk1) is a plakin family gene with its function remains largely unknown, although the plakin genes are known to function in interconnecting cytoskeletal filaments and anchoring them at plasma membrane-associated adhesive junction. Here we analyzed the expression patterns of Eppk1 in the developing and adult pancreas in the mice. In the embryonic pancreas, Eppk1+/Pdx1+ and Eppk1+/Sox9+ pancreatic progenitor cells were observed in early pancreatic epithelium. Since Pdx1 expression overlapped with that of Sox9 at this stage, these multipotent progenitor cells are Eppk1+/Pdx1+/Sox9+ cells. Then Eppk1 expression becomes confined to Ngn3+ or Sox9+ endocrine progenitor cells, and p48+ exocrine progenitor cells, and then restricted to the duct cells and a cells at birth. In the adult pancreas, Eppk1 is expressed in centroacinar cells (CACs) and in duct cells. Eppk1 is observed in pancreatic intraepithelial neoplasia (PanIN), previously identified as pancreatic ductal adenocarcinoma (PDAC) precursor lesions. In addition, the expansion of Eppk1-positive cells occurs in a caerulein-induced acute pancreatitis, an acinar cell regeneration model. Furthermore, in the partial pancreatectomy (Px) regeneration model using mice, Eppk1 is expressed in "ducts in foci", a tubular structure transiently induced. These results suggest that Eppk1 serves as a useful marker for detecting pancreatic progenitor cells in developing and regenerating pancreas. [source]


Photochemical Internalization of Transgenes Controlled by the Heat-shock Protein 70 Promoter

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2006
Lina Prasmickaite
ABSTRACT Photochemical internalization (PCI) is a targeting technique that facilitates endosomal escape of macromolecules, such as transgenes, in response to photochemical treatment with endosome/lysosome-localized photosensitizers, such as disul-fonated meso-tetraphenylporphine (TPPS2a). In gene therapy this leads to enhanced transgene expression. Moreover, photochemical treatment generally activates transcription of stress-response genes, such as heat-shock proteins (HSPs), via stimulation of corresponding promoters. Therefore, we used HSP70 (HSPp; a promoter from the HSP family gene) and investigated whether the PCI stimulus could also activate HSPp and thereby stimulate transcription (expression) of the HSPp-controlled transgene internalized via PCI. Using human colorectal carcinoma and hepatoma cell lines in vitro, we showed that TPPS2a -based photochemical treatment enhances expression of cellular HSP70, which correlated with a photo-chemically enhanced expression (approximately 2-fold, at PCI-optimal doses) of the HSPp-controlled transgene integrated in the genome. Furthermore, PCI enhanced expression of the HSPp-controlled episomal transgene delivered as a plas-mid. However, in plasmid-based transfection, PCI-mediated enhancement with HSPp did not exceed the enhancement achieved with the constitutive active CMV promoter. In conclusion, we demonstrated that the PCI-relevant treatment initiates HSP70 response and that the HSP70 promoter can be used in combination with PCI, leading to PCI-enhanced expression of the HSPp-controlled transgene. [source]


Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 1 2010
Norito Shibata
Freshwater planarians, Plathelminthes, have been an intriguing model animal of regeneration studies for more than 100 years. Their robust regenerative ability is one of asexual reproductive capacity, in which complete animals develop from tiny body fragments within a week. Pluripotent adult somatic stem cells, called neoblasts, assure this regenerative ability. Neoblasts give rise to not only all types of somatic cells, but also germline cells. During the last decade, several experimental techniques for the analysis of planarian neoblasts at the molecular level, such as in situ hybridization, RNAi and fluorescence activated cell sorting, have been established. Moreover, information about genes involved in maintenance and differentiation of neoblasts has been accumulated. One of the molecular features of neoblasts is the expression of many RNA regulators, which are involved in germline development in other animals, such as vasa and piwi family genes. In this review, we introduce physiological and molecular features of the neoblast, and discuss how germline genes regulate planarian neoblasts and what differences exist between neoblasts and germline cells. [source]


Changes in gravitational force cause changes in gene expression in the lens of developing zebrafish

DEVELOPMENTAL DYNAMICS, Issue 10 2006
Naoko Shimada
Abstract Gravity has been a constant physical factor during the evolution and development of life on Earth. We have been studying effects of simulated microgravity on gene expression in transgenic zebrafish embryos expressing gfp under the influence of gene-specific promoters. In this study, we assessed the effect of microgravity on the expression of the heat shock protein 70 (hsp70) gene in lens during development using transgenic zebrafish embryos expressing gfp under the control of hsp70 promoter/enhancer. Hsp70:gfp expression was up-regulated (45%) compared with controls during the developmental period that included the lens differentiation stage. This increase was lens specific, because the entire embryo showed only a 4% increase in gfp expression. Northern blot and in situ hybridization analysis indicated that the hsp70:gfp expression recapitulated endogenous hsp70 mRNA expression. Hypergravity exposure also increased hsp70 expression during the same period. In situ hybridization analysis for two lens-specific crystallin genes revealed that neither micro- nor hypergravity affected the expression level of ,B1 - crystallin, a non-hsp gene used as a marker for lens differentiation. However, hypergravity changed the expression level of ,A - crystallin, a member of the small hsp gene family. Terminal deoxynucleotidyl transferase,mediated deoxyuridinetriphosphate nick end-labeling (TUNEL) assay analysis showed that altered-gravity (,g) decreased apoptosis in lens during the same period and the decrease correlated with the up-regulation of hsp70 expression, suggesting that elimination of nuclei from differentiating lens fiber cells was suppressed probably through hsp70 up-regulation. These results support the idea that ,g influences hsp70 expression and differentiation in lens-specific and developmental period specific manners and that hsp family genes play a specific role in the response to ,g. Developmental Dynamics 235:2686,2694, 2006. © 2006 Wiley-Liss, Inc. [source]


Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes

DEVELOPMENTAL DYNAMICS, Issue 3 2004
Tohru Kobayashi
Abstract The recent discovery of the DMY gene (DM domain gene on Y chromosome and one of the DMRT1 family genes) as a key determinant of male development in the medaka (Oryzias latipes) has led to its designation as the prime candidate gene for sex-determination in this species. This study focused on the sites and pattern of expression of DMY and DMRT1 genes during gonadal differentiation of medaka to further determine their roles in testis development. DMY mRNA and protein are expressed specifically in the somatic cells surrounding primordial germ cells (PGCs) in the early gonadal primordium, before morphological sex differences are seen. However, somatic cells surrounding PGCs never express DMY during the early migratory period. Expression of DMY persists in Sertoli cell lineage cells, from PGC-supporting cells to Sertoli cells, indicating that only DMY -positive cells enclose PGCs during mitotic arrest after hatching. DMRT1 is expressed in spermatogonium-supporting cells after testicular differentiation (20,30 days after hatching), and its expression is much higher than that of DMY in mature testes. In XX sex-reversed testes, DMRT1 is expressed in the Sertoli cell lineage, similar to the expression of DMY in XY testes. These results suggest strongly that DMY regulates PGC proliferation and differentiation sex-specifically during early gonadal differentiation of XY individuals and that DMRT1 regulates spermatogonial differentiation. Developmental Dynamics 231:518,526, 2004. © 2004 Wiley-Liss, Inc. [source]


Glutathione depletion and cardiomyocyte apoptosis in viral myocarditis

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 3 2004
V. Kytö
Abstract Background, The course of viral myocarditis is highly variable. Oxidative stress and Bcl-2 family genes may play a role in its pathogenesis by regulating the amount of cardiomyocyte apoptosis. Apoptosis is difficult to detect and quantify in vivo. Therefore, we set to look for indicators of this potentially preventable form of cell death during various phases of experimental murine coxsackievirus B3 myocarditis. Methods, BALB/c mice were infected with the cardiotropic coxsackievirus B3 variant. Glutathione (HPLC), cardiomyocyte apoptosis (TUNEL and caspase-3 cleavage), Bax and Bcl-XL mRNA expression (real time RT-PCR), histopathology and viral replication (plaque assay and real time RT-PCR) were measured from day 3 to day 20 after infection. Results, Infection caused severe myocarditis and led to progressive decrease of plasma glutathione levels. Myocardial mRNA levels of pro-apoptotic Bax and antiapoptotic Bcl-XL were significantly increased from day 3 onwards. Bax mRNA and ratio of Bax to Bcl-XL correlated with cardiomyocyte apoptosis (r = 0·77, P = < 0·001 and r 0·51, P < 0·01, respectively). Cardiomyocyte apoptosis was highest on day 5, coinciding with a rapid decline in plasma glutathione (r = ,0·52, P = 0·003). Conclusions, Systemic oxidative stress as indicated by decreased plasma glutathione levels coincides with cardiomyocyte apoptosis in experimental coxsackievirus myocarditis. Decreased plasma glutathione levels and changes in cardiac Bax and Bcl-XL mRNA expression identify a phase of myocarditis in which the potentially preventable cardiomyocyte apoptosis is mostly observed. [source]


Involvement of leptin signaling in the survival and maturation of bone marrow-derived dendritic cells

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 12 2006
Kwan Lam, Queenie
Abstract Previous studies demonstrated that lymphocyte development is impaired in leptin receptor (Ob - R)-deficient db/db mice. However, it remains unclear whether or not leptin signaling plays a physiological role in dendritic cell (DC) development and function. In this study, we first detected Ob-R expression in murine DC. Using db/db mice at a pre-diabetic stage, we demonstrate that the total number of DC generated from bone marrow (BM) cultures is significantly lower than in WT controls. Similarly, selective blockade of leptin with a soluble mouse Ob-R chimera (Ob-R:Fc) inhibited DC generation in wild-type BM cultures. The reduced DC yield in db/db BM culture was attributed to significantly increased apoptosis, which was associated with dysregulated expression of Bcl-2 family genes. Moreover, db/db DC displayed markedly reduced expression of co-stimulatory molecules and a Th2-type cytokine profile, with a poor capacity to stimulate allogeneic T cell proliferation. Consistent with their impaired DC phenotype and function, db/db DC showed significantly down-regulated activities of the PI3K/Akt pathway as well as STAT-3 and I,B-,. In conclusion, our findings demonstrate the involvement of leptin signaling in DC survival and maturation. See accompanying commentary: http://dx.doi.org/10.1002/eji.200636770 [source]


Protein disulfide isomerase family proteins involved in soybean protein biogenesis

FEBS JOURNAL, Issue 3 2007
Hiroyuki Wadahama
Protein disulfide isomerase family proteins are known to play important roles in the folding of nascent polypeptides and the formation of disulfide bonds in the endoplasmic reticulum. In this study, we cloned two similar protein disulfide isomerase family genes from soybean leaf (Glycine max L. Merrill cv. Jack) mRNA by RT-PCR using forward and reverse primers designed from the expressed sequence tag clone sequences. The cDNA encodes a protein of either 364 or 362 amino acids, named GmPDIS-1 or GmPDIS-2, respectively. The nucleotide and amino acid sequence identities of GmPDIS-1 and GmPDIS-2 were 68% and 74%, respectively. Both proteins lack the C-terminal, endoplasmic reticulum-retrieval signal, KDEL. Recombinant proteins of both GmPDIS-1 and GmPDIS-2 were expressed in Escherichia coli as soluble folded proteins that showed both an oxidative refolding activity of denatured ribonuclease A and a chaperone activity. Their domain structures were identified as containing two thioredoxin-like domains, a and a,, and an ERp29c domain by peptide mapping with either trypsin or V8 protease. In cotyledon cells, both proteins were shown to distribute to the endoplasmic reticulum and protein storage vacuoles by confocal microscopy. Data from coimmunoprecipitation and crosslinking experiments suggested that GmPDIS-1 associates with proglycinin, a precursor of the seed storage protein glycinin, in the cotyledon. Levels of GmPDIS-1, but not of GmPDIS-2, were increased in cotyledons, where glycinin accumulates during seed development. GmPDIS-1, but not GmPDIS-2, was induced under endoplasmic reticulum-stress conditions. [source]


MSI-1, a neural RNA-binding protein, is involved in male mating behaviour in Caenorhabditis elegans

GENES TO CELLS, Issue 11 2000
Akinori Yoda
Neural RNA-binding proteins are thought to play important roles in neural development and the functional regulation of postmitotic neurones by mediating post-transcriptional gene regulation. RNA-binding proteins belonging to the Musashi family are highly expressed in the nervous system; however, their roles are poorly understood. We identified a Caenorhabditis elegans Musashi homologue, MSI-1, whose RNA-recognition motifs show extensive similarity to those of Drosophila and vertebrate Musashi proteins. We isolated a msi-1 mutant and found males with this mutation to have a mating defect. C. elegans male mating behaviour includes a distinct series of steps: response to contact, backing, turning, vulva location, spicule insertion, and sperm transfer. msi-1 is required for the turning and vulva location steps. Like other Musashi family members, MSI-1 is expressed specifically in neural cells, including male-specific neurones required for turning and vulva location. However, msi-1 was not expressed in proliferating neural progenitors in C. elegans, unlike the Musashi family genes in other systems. Our results suggest that msi-1 is expressed specifically in postmitotic neurones in C. elegans. msi-1 is required for full development of male mating behaviour, possibly through regulation of msi-1 expressing neurones. [source]


The effect of diet on the expression of lipase genes in the midgut of the lightbrown apple moth (Epiphyas postvittana Walker; Tortricidae)

INSECT MOLECULAR BIOLOGY, Issue 1 2010
J. T. Christeller
Abstract We have identified lipase-like genes from an Epiphyas postvittana larval midgut EST library. Of the 10 pancreatic lipase family genes, six appear to encode active lipases and four encode inactive lipases, based on the presence/absence of essential catalytic residues. The four gastric lipase family genes appear to encode active proteins. Phylogenetic analysis of 54 lepidopteran pancreatic lipase proteins resolved the clade into five groups of midgut origin and a sixth of non-midgut lipases. The inactive proteins formed two separate groups with highly conserved mutations. The lepidopteran midgut lipases formed a ninth subfamily of pancreatic lipases. Eighteen insect and human gastric lipases were analysed phylogenetically with only very weak support for any groupings. Gene expression was measured in the larval midgut following feeding on five artificial diets and on apple leaves. The artificial diets contained different levels of triacylglycerol, linoleic acid and cholesterol. Significant changes in gene expression (more than 100-fold for active pancreatic lipases) were observed. All the inactive lipases were also highly expressed. The gastric lipase genes were expressed at lower levels and suppressed in larvae feeding on leaves. Together, protein motif analysis and the gene expression data suggest that, in phytophagous lepidopteran larvae, the pancreatic lipases may function in vivo as galactolipases and phospholipases whereas the gastric lipases may function as triacylglycerol hydrolases. [source]


Association study of polymorphisms in SOCS family genes with type 1 diabetes mellitus

INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 1 2006
R. Ni
Summary Suppressors of cytokine signalling (SOCS) proteins play important roles in the negative regulation of cytokine signal. We first searched for polymorphisms in SOCS-1, SOCS-3 and SOCS-5 genes, and examined the association of the polymorphisms with type 1 diabetes (T1D). As a result, we did not find any significant associations between SOCS genes and T1D. [source]


Heparin and Heparan Sulfate Biosynthesis

IUBMB LIFE, Issue 4 2002
Kazuyuki Sugahara
Abstract Heparan sulfate is one of the most informationally rich biopolymers in Nature. Its simple sugar backbone is variously modified to different degrees depending on the cellular conditions. Thus, it matures to have an enormously complicated structure, which most likely exhibits a considerable number of unique overlapping sequences with peculiar sulfation profiles. Such sequences are recognized by specific complementary proteins, which form a huge group of "heparin-binding proteins," and the sugar sequences in turn support unique functions of the respective proteins through specific interactions. The heparan sulfate sequences are not directly encoded by genes, but are created by elaborate biosynthetic mechanisms, which ensure the generation of these indispensable sequences. In heparan sulfate biosynthesis, the tetrasaccharide sequence (GlcA-Gal-Gal-Xyl-), designated the protein linkage region, is first assembled on a specific Ser residue at the glycosaminoglycan attachment site of a core protein. A heparan sulfate chain is then polymerized on this fragment by alternate additions of GlcNAc and GlcA through the actions of glycosyltransferases with overlapping specificities encoded by the tumor suppressor EXT family genes. Then follow various modifications by N -deacetylation and N -sulfation of glucosamine, C5-epimerization of GlcA and multiple O -sulfations of the component sugars. Recent studies have achieved purification of several, and molecular cloning of most, of the enzymes responsible for these reactions. Some of these enzymes are bifunctional. The availability of cDNA probes has facilitated elucidation of the crystal structures for two of the biosynthetic enzymes, demonstration of their intracellular location, and their occurrence in complexes to achieve rapid and efficient synthesis of complex sugar sequences. Genomic structure and transcript analysis have shown the existence of multiple isoforms for most of the sulfotransferases. Many aspects of the heparan sulfate biosynthetic scheme are shared by the structural analog heparin, which is synthesized in mast cells and some other mammalian cells and is several-fold higher degree of polymerization and more extensive modification than heparan sulfate. [source]


Ras family genes: An interesting link between cell cycle and cancer

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2002
M. Macaluso
Ras genes are evolutionary conserved and codify for a monomeric G protein binding GTP (active form) or GDP (inactive form). The ras genes are ubiquitously expressed although mRNA analysis suggests different level expression in tissue. Mutations in each ras gene frequently were found in different tumors, suggesting their involvement in the development of specific neoplasia. These mutations lead to a constitutive active and potentially oncogenic protein that could cause a deregulation of cell cycle. Ras protein moderates cellular responses at several mitogens and/or differentiation factors and at external stimuli. These stimuli activate a series of signal transduction pathways that either can be independent or interconnected at different points. Recent observations begin to clarify the complex relationship between Ras activation, apoptosis, and cellular proliferation. A greater understanding of these processes would help to identify the factors directly responsible for cell cycle deregulation in several tumors, moreover it would help the design of specific therapeutic strategies, for the control on the proliferation of neoplastic cells. We summarize here current knowledge of ras genes family: structural and functional characteristics of Ras proteins and their links with cell cycle and cancer. © 2002 Wiley-Liss, Inc. [source]


Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner

THE PLANT JOURNAL, Issue 1 2006
Sandra Kuusk
Summary Gene duplication events, and the subsequent functional divergence of duplicates, are believed to be important evolutionary agents, driving morphological diversification. We have studied the structural and functional diversification of members of a plant-specific gene family in Arabidopsis thaliana by analysing mutant phenotypes, expression patterns and phylogeny. The SHI gene family comprises ten members that encode proteins with a RING finger-like zinc finger motif. We show that, despite being highly divergent in sequence, except in two conserved regions, many of the SHI -related genes are partially redundant in function and synergistically promote gynoecium, stamen and leaf development in Arabidopsis. Gynoecia of the loss-of-function sty1-1 mutant display subtle morphological defects, and, although mutations in the related STY2, SHI, SRS3, SRS4, SRS5, SRS7 and LRP1 genes have no apparent effect on gynoecium development, the sty1-1 mutant phenotype is gradually enhanced in double, triple, quadruple and quintuple mutant combinations, suggesting a remarkably extensive functional conservation within the family, which appears to be based on dosage dependency and protection against dominant negative mutations. In multiple mutant lines, all marginal tissues in the apical part of the gynoecium are dramatically reduced or missing, and our data indicate that SHI family members may promote formation of these tissues downstream of the transcriptional co-repressor LEUNIG (LUG). [source]


Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition

THE PLANT JOURNAL, Issue 3 2004
Chang-en Tian
Summary Auxin response factor (ARF) family genes play a central role in controlling sensitivity to the plant hormone auxin. We characterized the function of ARF8, in Arabidopsis by investigating a T-DNA insertion line (arf8-1) and overexpression lines (ARF8 OX) of ARF8. arf8-1 showed a long-hypocotyl phenotype in either white, blue, red or far-red light conditions, in contrast to ARF8 OX that displayed short hypocotyls in the light. Stronger and weaker apical dominance, and promotion and inhibition of lateral root formation were observed in arf8-1 and ARF8 OX respectively. Sensitivity to auxin was unaltered in arf8-1 hypocotyls with respect to growth inhibition caused by exogenously applied auxin and growth promotion induced by higher temperatures. ARF8 expression was observed constitutively in shoot and root apexes, and was induced in the light condition in hypocotyls. Free IAA contents were approximately 30% reduced in light-grown hypocotyls of ARF8 OX, but were similar between those of arf8-1 and wild type. Expression of the three GH3 genes was reduced in arf8-1 and increased in ARF8 OX, indicating that they are targets of ARF8 transcriptional control. Because the three GH3 proteins may be involved in the conjugation of IAA as suggested by Staswick et al. (2002), and because two of the three GH3 genes are auxin inducible, ARF8 may control the free IAA level in a negative feedback fashion by regulating GH3 gene expression. ARF family genes seem to control both auxin sensitivity and homeostasis in Arabidopsis. [source]


Expression of C-IAP1, C-IAP2 and SURVIVIN discriminates different types of lymphoid malignancies

BRITISH JOURNAL OF HAEMATOLOGY, Issue 6 2005
Aniek O. de Graaf
Summary (De-)regulation of apoptosis plays an important role in normal and malignant lymphopoiesis. Apoptosis-regulating genes of the BCL-2 family and the recently identified inhibitors of apoptosis (IAP) family have been implicated in different types of non-Hodgkin lymphoma (NHL). To investigate whether expression of specific apoptosis-regulating genes correlated with different types of lymphoid malignancies, we measured the expression of five BCL-2 family genes, four IAP family genes and SMAC by real-time quantitative polymerase chain reaction in patient samples. In total, 137 samples from B- and T-cell acute lymphoblastic leukaemia (ALL), B-cell chronic lymphocytic leukaemia (CLL), six different NHL types and three control tissue types were analysed. The data were further analysed using cluster and discriminant analysis. Three specific expression patterns were identified for CLL, ALL and NHL respectively. CLL samples, as well as B-ALL and follicular lymphoma samples showed high similarity in the expression of these apoptosis-regulating genes and could be distinguished from each other and other diseases and controls. Discriminant analysis identified three members of the IAP family, C-IAP1, C-IAP2 and SURVIVIN, as the most informative genes to discriminate between these lymphoid malignancies. [source]


The role of TASK1 in aldosterone production and its expression in normal adrenal and aldosterone-producing adenomas

CLINICAL ENDOCRINOLOGY, Issue 1 2010
Edson F. Nogueira
Summary Objectives, Aldosterone production in the adrenal glomerulosa is mainly regulated by angiotensin II and K+. Adrenal glomerulosa cells are uniquely sensitive to extracellular K+. Genetic deletion of subunits of K+ -selective leak-channels (KCNK), TASK1 and/or TASK3, in mice generates animals with hyperaldosteronism and histological changes in the adrenal cortex. Herein, we studied the expression of TASK1 in human adrenocortical cells, as well as its role in aldosterone production in H295R cells. Design, TASK1 expression was investigated by comparative microarray analysis of aldosterone-producing adenomas (APA) and normal adrenals (NAs). The effects of TASK1 knockdown by siRNA transfection were investigated in H295R cells. Fluo-4 fluorescent measurements of intracellular Ca2 + and pharmacological inhibition of Ca2 + -dependent calmodulin kinases (CaMK) were performed to better define the effects of TASK1 on Ca2 + signalling pathways. Results, Microarray analysis of APA and NA showed similar expression of TASK1 between these two groups. However, in APA, NA and H295R cells the expression of TASK1 was predominant when compared with other KCNK family members. Knockdown of TASK1 (with siRNA) induced the expression of steroidogenic acute regulatory (StAR) protein and aldosterone synthase (CYP11B2), and also stimulated pregnenolone and aldosterone production. Cells transfected with siTASK1 had increased intracellular Ca2 + , leading to activation of CaMK and increased expression of CYP11B2. Conclusions, Our study reveals the predominant expression of TASK1 over other KCNK family genes in the human adrenal cortex. Herein, we also described the role of TASK1 in the regulation of human aldosterone production through regulation of intracellular Ca2 + and CaMK signalling pathways. [source]


Community-associated Staphylococcus aureus infections and nasal carriage among children: molecular microbial data and clinical characteristics

CLINICAL MICROBIOLOGY AND INFECTION, Issue 11 2008
G. Sdougkos
Abstract An increasing number of infections caused by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) carrying the Panton,Valentine leukocidin (PVL) genes was recently identified in Greece. In the present study, 170 patients with S. aureus infections and 123 uninfected children (<15 years old) who had been tested for nasal carriage were evaluated during a 2-year period. The MecA, PVL and superantigen family genes, and MRSA clones, were investigated by molecular methods. Sites of infection and laboratory findings for patients were recorded. The results were compared and statistically analysed. Among 123 uninfected children 73 (59%) carried S. aureus, including four MRSA strains. Of these, three MRSA and three methicillin-sensitive S. aureus (MSSA) strains were PVL-positive (p <0.0001). Ninety-six patients (96/170) exhibited skin and soft-tissue infections (SSTIs), and 74 exhibited invasive infections. The incidence of staphylococcal infections increased during July to September each year. In total, 110 S. aureus isolates were PVL-positive (81 from SSTIs and 29 from invasive infections, p <0.0001). Ninety-nine out of 106 MRSA (93%) isolates from 170 patients carried the PVL genes (p <0.0001); 97 belonged to the clonal complex CC80. Leukocyte and polymorphonuclear cell counts were higher among children with MRSA infections (p <0.005). MSSA predominated among patients with invasive infections (43/74), and carried mainly genes of the superantigen family. Children <5 years of age showed a higher risk of MRSA infection. The present study demonstrates that infections due to PVL-positive CA-MRSA spread easily among children, and SSTIs can lead to invasive infections. Nasal colonization may be an additional factor contributing to the emergence of CA-MRSA. [source]