Home About us Contact | |||
Familial Hypocalciuric Hypercalcemia (familial + hypocalciuric_hypercalcemia)
Selected AbstractsFamilial Hypocalciuric Hypercalcemia Caused by an R648stop Mutation in the Calcium-Sensing Receptor Gene ,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2002Mika Yamauchi Abstract In this study, we report an 84-year-old female proband in a Japanese family with familial hypocalciuric hypercalcemia (FHH) caused by an R648stop mutation in the extracellular calcium-sensing receptor (CaR) gene. At the age of 71 years, she presented with hypercalcemia (11.4 mg/dl), hypocalciuria (Cca/Ccr = 0.003), hypermagnesemia (2.9 mg/dl), and a high-serum parathyroid hormone (PTH) level (midregion PTH, 3225 [160,520] pg/ml). At the age of 74 years, a family screening was carried out and revealed a total of 9 hypercalcemic individuals (all intact PTH values <62 pg/dl) among 17 family members tested, thus, being diagnosed as FHH. Two and one-half of three clearly enlarged parathyroid glands were resected, because persistently high PTH levels (intact PTH, 292 pg/ml; midregion PTH, 5225 pg/ml) and the presence of a markedly enlarged parathyroid gland by several imaging modalities (ultrasonography, computed tomography [CT], magnetic resonance imaging [MRI], and subtraction scintigraphy) suggested coexistent primary hyperparathyroidism (pHPT); however, hypercalcemia persisted postoperatively. Histological and immunohistochemical examination revealed that the resected parathyroid glands showed lipohyperplasia as well as normally expressed Ki67, vitamin D receptor (VDR), and the CaR. Sequence analysis disclosed that the proband and all affected family members had a heterozygous nonsense (R648stop) mutation in the CaR gene. This mutation is located in the first intracellular loop; thus, it would be predicted to produce a truncated CaR having only one transmembrane domain (TMD) and lacking its remaining TMDs, intracellular loops, and C-terminal tail. Western analysis of biotinylated HEK293 cells transiently transfected with this mutant receptor showed cell surface expression of the truncated protein at a level comparable with that of the wild-type CaR. The mutant receptor, however, exhibited no increase in intracellular free calcium concentration (Ca2+i) when exposed to high extracellular calcium concentrations (Ca2+o). The proband's clinical course was complicated because of associated renal tubular acidosis (RTA) and nephrotic syndrome. However, it was unclear whether their association affected the development of elevated serum PTH and parathyroid gland enlargement. This report is the first to show that an R648stop CaR mutation yields a truncated receptor that is expressed on the cell surface but is devoid of biological activity, resulting in FHH. [source] Familial Hypocalciuric Hypercalcemia in the Donor and Recipient of a Living Related Donor Kidney TransplantAMERICAN JOURNAL OF TRANSPLANTATION, Issue 3 2007J. E. Novak Familial hypocalciuric hypercalcemia (FHH) is caused by heterozygous inactivation of the calcium-sensing receptor, which is notably expressed in parathyroid and kidney. FHH is characterized by asymptomatic hypercalcemia and hypophosphatemia and confers minimal, if any, morbidity. Renal transplantation in patients with FHH has not been described previously. This report describes a patient with FHH who developed end-stage renal disease from another cause and subsequently received a living related donor kidney transplant from her FHH-affected daughter. The excellent posttransplant clinical course of both recipient and donor is emphasized. [source] CASRdb: calcium-sensing receptor locus-specific database for mutations causing familial (benign) hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia,HUMAN MUTATION, Issue 2 2004Svetlana Pidasheva Abstract Familial hypocalciuric hypercalcemia (FHH) is caused by heterozygous loss-of-function mutations in the calcium-sensing receptor (CASR), in which the lifelong hypercalcemia is generally asymptomatic. Homozygous loss-of-function CASR mutations manifest as neonatal severe hyperparathyroidism (NSHPT), a rare disorder characterized by extreme hypercalcemia and the bony changes of hyperparathyroidism, which occur in infancy. Activating mutations in the CASR gene have been identified in several families with autosomal dominant hypocalcemia (ADH), autosomal dominant hypoparathyroidism, or hypocalcemic hypercalciuria. Individuals with ADH may have mild hypocalcemia and relatively few symptoms. However, in some cases seizures can occur, especially in younger patients, and these often happen during febrile episodes due to intercurrent infection. Thus far, 112 naturally-occurring mutations in the human CASR gene have been reported, of which 80 are unique and 32 are recurrent. To better understand the mutations causing defects in the CASR gene and to define specific regions relevant for ligand-receptor interaction and other receptor functions, the data on mutations were collected and the information was centralized in the CASRdb (www.casrdb.mcgill.ca), which is easily and quickly accessible by search engines for retrieval of specific information. The information can be searched by mutation, genotype,phenotype, clinical data, in vitro analyses, and authors of publications describing the mutations. CASRdb is regularly updated for new mutations and it also provides a mutation submission form to ensure up-to-date information. The home page of this database provides links to different web pages that are relevant to the CASR, as well as disease clinical pages, sequence of the CASR gene exons, and position of mutations in the CASR. The CASRdb will help researchers to better understand and analyze the mutations, and aid in structure,function analyses. Hum Mutat 24:107,111, 2004. © 2004 Wiley-Liss, Inc. [source] Familial Hypocalciuric Hypercalcemia in the Donor and Recipient of a Living Related Donor Kidney TransplantAMERICAN JOURNAL OF TRANSPLANTATION, Issue 3 2007J. E. Novak Familial hypocalciuric hypercalcemia (FHH) is caused by heterozygous inactivation of the calcium-sensing receptor, which is notably expressed in parathyroid and kidney. FHH is characterized by asymptomatic hypercalcemia and hypophosphatemia and confers minimal, if any, morbidity. Renal transplantation in patients with FHH has not been described previously. This report describes a patient with FHH who developed end-stage renal disease from another cause and subsequently received a living related donor kidney transplant from her FHH-affected daughter. The excellent posttransplant clinical course of both recipient and donor is emphasized. [source] Familial Hypocalciuric Hypercalcemia Caused by an R648stop Mutation in the Calcium-Sensing Receptor Gene ,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2002Mika Yamauchi Abstract In this study, we report an 84-year-old female proband in a Japanese family with familial hypocalciuric hypercalcemia (FHH) caused by an R648stop mutation in the extracellular calcium-sensing receptor (CaR) gene. At the age of 71 years, she presented with hypercalcemia (11.4 mg/dl), hypocalciuria (Cca/Ccr = 0.003), hypermagnesemia (2.9 mg/dl), and a high-serum parathyroid hormone (PTH) level (midregion PTH, 3225 [160,520] pg/ml). At the age of 74 years, a family screening was carried out and revealed a total of 9 hypercalcemic individuals (all intact PTH values <62 pg/dl) among 17 family members tested, thus, being diagnosed as FHH. Two and one-half of three clearly enlarged parathyroid glands were resected, because persistently high PTH levels (intact PTH, 292 pg/ml; midregion PTH, 5225 pg/ml) and the presence of a markedly enlarged parathyroid gland by several imaging modalities (ultrasonography, computed tomography [CT], magnetic resonance imaging [MRI], and subtraction scintigraphy) suggested coexistent primary hyperparathyroidism (pHPT); however, hypercalcemia persisted postoperatively. Histological and immunohistochemical examination revealed that the resected parathyroid glands showed lipohyperplasia as well as normally expressed Ki67, vitamin D receptor (VDR), and the CaR. Sequence analysis disclosed that the proband and all affected family members had a heterozygous nonsense (R648stop) mutation in the CaR gene. This mutation is located in the first intracellular loop; thus, it would be predicted to produce a truncated CaR having only one transmembrane domain (TMD) and lacking its remaining TMDs, intracellular loops, and C-terminal tail. Western analysis of biotinylated HEK293 cells transiently transfected with this mutant receptor showed cell surface expression of the truncated protein at a level comparable with that of the wild-type CaR. The mutant receptor, however, exhibited no increase in intracellular free calcium concentration (Ca2+i) when exposed to high extracellular calcium concentrations (Ca2+o). The proband's clinical course was complicated because of associated renal tubular acidosis (RTA) and nephrotic syndrome. However, it was unclear whether their association affected the development of elevated serum PTH and parathyroid gland enlargement. This report is the first to show that an R648stop CaR mutation yields a truncated receptor that is expressed on the cell surface but is devoid of biological activity, resulting in FHH. [source] |