Familial Breast Cancer (familial + breast_cancer)

Distribution by Scientific Domains


Selected Abstracts


BRCA2 gene mutations in Greek patients with familial breast cancer ,,

HUMAN MUTATION, Issue 1 2002
Athanasios Armakolas
Abstract Family history is a well-recognized risk factor for the development of breast cancer. The isolation of BRCA1 and BRCA2 genes, the two major predisposing genes in familial and to early onset breast and ovarian cancer, has resulted to the identification of a large number of families with mutations in these two genes. Despite the large number of distinct mutations detected in both genes, several mutations have been found to recur in unrelated families of diverse geographical origin. We have analyzed 27 Greek patients with familial breast cancer the majority of those having one first and one second degree relatives affected and 28 patients with sporadic breast cancer for BRCA2 germline mutations. The techniques used were single-strand conformation polymorphism analysis (SSCP) followed by sequencing. Furthermore, the clinical presentation and prognosis of BRCA2 associated breast cancer cases was compared to 20 adequately matched for age and date of diagnosis (within one year) sporadic breast cancer patients. We identified three novel BRCA2 mutations (3058delA, 6024delTA, and 4147delG) in the ovarian cancer cluster region (OCCR) and one already known (2024del5) germline BRCA2 gene mutation in five different breast cancer families. The 4147delG mutation was detected in two unrelated patients. BRCA2 germline mutations were correlated with early-onset breast cancer RR=4.77 (95% CI: 0.666-34.463). Although patients with BRCA2 germline mutations did not have a distinct histological phenotype they had an improved overall survival (100% vs 65%). Our findings suggest that there is a cluster of novel mutations in exons 10 and 11 in Greek patients with familial breast cancer. These mutations appear to have a milder clinical phenotype when compared to the rest of the study group. © 2001 Wiley-Liss, Inc. [source]


c-MYC Asn11Ser is associated with increased risk for familial breast cancer

INTERNATIONAL JOURNAL OF CANCER, Issue 4 2005
Michael Wirtenberger
Abstract c-MYC is a multifaceted protein that regulates cell proliferation, differentiation and apoptosis. Its crucial role in diverse cancers has been demonstrated in several studies. Here, we analysed the influence of the rare c-MYC Asn11Ser polymorphism on familial breast cancer risk by performing a case-control study with a Polish (cases n = 349; controls n = 441) and a German (cases n = 356; controls n = 655) study population. All cases have been tested negative for mutations in the BRCA1 and BRCA2 genes. A joint analysis of the Polish and the German study population revealed a 54% increased risk for breast cancer associated with the heterozygous Asn11Ser variant (OR = 1.54, 95% CI 1.05,2.26, p = 0.028). The breast cancer risk associated with this genotype increases above the age of 50 years (OR = 2.24, 95% CI 1.20,4.21, p = 0.012). The wild-type amino acid Asn of this polymorphism is located in the N-terminal MYC transactivation domain and is highly conserved not only among most diverse species but also in the N-MYC homologue. Due to the pivotal role of c-MYC in diverse tumours, this variant might affect the genetic susceptibility of other cancers as well. © 2005 Wiley-Liss, Inc. [source]


Cisplatin resistance conferred by the RAD51D (E233G) genetic variant is dependent upon p53 status in human breast carcinoma cell lines

MOLECULAR CARCINOGENESIS, Issue 7 2009
Aditi Nadkarni
Abstract RAD51D, a paralog of the mammalian RAD51 gene, contributes towards maintaining genomic integrity by homologous recombination DNA repair and telomere maintenance. A RAD51D variant, E233G, was initially identified as a potential susceptibility allele in high-risk, site-specific, familial breast cancer. We describe in this report that the Rad51d (E233G) genetic variant confers increased cisplatin resistance and cell growth phenotypes in human breast carcinoma cell lines with a mutant p53 gene (BT20 and T47D) but not with a wild-type p53 gene (MCF-7). Treatment with a p53 specific inhibitor, pifithrin ,, restored this resistant phenotype in the MCF-7 cell line. Additionally, Rad51d (E233G) conferred increased cisplatin resistance of an MCF7 cell line in which p53 expression was stably knocked down by shRNAp53, indicating that the effect of this variant is dependent upon p53 status. Further study of Rad51d (E233G) will provide mechanistic insight towards the role of RAD51D in cellular response to anticancer agents and as a potential target for cancer therapy. © 2009 Wiley-Liss, Inc. [source]


Mammary Gland Architecture as a Determining Factor in the Susceptibility of the Human Breast to Cancer

THE BREAST JOURNAL, Issue 5 2001
Jose Russo MD
The developmental pattern of the breast can be assessed by determining the composition of the breast in specific lobular structures, which are designated as lobules type 1 (Lob 1), lobules type 2 (Lob 2), and lobules type 3 (Lob 3), with Lob 1 being the less developed and Lob 3 being the most differentiated or with the highest number of ductules per lobular unit. In the present work, the patient population consisted of three groups of women who underwent surgical procedures: The first group included women who underwent reduction mammoplasty (RM) for cosmetic reasons. The second group included women who underwent prophylactic subcutaneous mastectomy after genetic counseling for either carrying the BRCA-1 gene or belonging to a pedigree with familial breast cancer (FAM), and the third group included women who underwent modified radical mastectomy (MRM) for the diagnosis of invasive carcinoma. The RM group consisted of 33 women, of whom 9 were nulliparous and 24 were parous. The FAM group consisted of 17 women, of whom 8 were nulliparous and 9 were parous. The MRM group consisted of 43 women, of whom 7 were nulliparous and 36 were parous. The analysis of the lobular composition of all of the samples from the RM group, which is considered the control group, revealed that Lob 1 represented 22%, Lob 2 represented 37%, and Lob 3 represented 38%, whereas the tissue examined from the FAM and MRM groups contained a preponderance of Lob 1 at 48% and 74%, respectively, over Lob 3, which was 10% and 3%, respectively. When the results of the analysis of breast tissue were separated according to the pregnancy history of the donor, it was found that in the control group or RM, there was a significant difference in lobular composition. Nulliparous women of the RM group showed a preponderance of Lob 1 (46%) over parous women, which contained only 17%, whereas the percentage of Lob 3 in the nulliparous group was significantly lower (7%) than the parous group (48%). In the breast tissues obtained from FAM and MRM, no significant differences in lobular composition were observed, as all of the samples contained a higher concentration of Lob 1, independent of the pregnancy history. The breast tissue of FAM and MRM of parous women had a developmental pattern that was similar to that of nulliparous women of the same group and that was less developed than the breast of parous women of the control group. An important difference between the Lob 1 of the FAM group versus the control (RM) and the MRM group was that most of these lobules had thin ductules with an increase in hyalinization of the intralobular stroma manifested in the whole-mount preparation as an alteration in the branching pattern. The data suggest that the breast tissue of women with invasive cancer, as well as those from a background of familial breast cancer, have an architectural pattern different from the control or normal tissues and that the BRCA-1 or related genes may have a functional role in the branching pattern of the breast during lobular development, mainly in the epithelial stroma interaction. [source]