Factor Functions (factor + function)

Distribution by Scientific Domains


Selected Abstracts


Leaving on the lights: host-specific derepression of Mycobacterium tuberculosis gene expression by anti-sigma factor gene mutations

MOLECULAR MICROBIOLOGY, Issue 5 2006
Robert N. Husson
Summary Regulation of transcription by alternative sigma factors is a strategy widely used by bacteria to adapt to changes in environmental conditions. For several pathogenic bacteria, alternative sigma factor-regulated gene expression is critical for virulence. The activity of many alternative sigma factors is in turn controlled by regulatory proteins that transduce and integrate environmental signals. In this issue of Molecular Microbiology, Said-Salim et al. demonstrate high-level expression of genes encoding major protein antigens in the bovine subspecies of Mycobacterium tuberculosis, in contrast to low-level expression in the human subspecies. Having previously suggested that SigK regulates the expression of these genes, the authors found that the high-expressers have point mutations in Rv0444c, a gene adjacent to sigK, and provided evidence that this gene encodes an anti-sigma factor whose function is abrogated by these mutations. These findings not only demonstrate an adaptive mechanism of potential importance in tuberculosis immunity and pathogenesis, but also raise interesting questions regarding the origin of these mutations and their effects on anti-sigma factor function. [source]


Differentiation inducing factors in Dictyostelium discoideum: A novel low molecular factor functions at an early stage(s) of differentiation

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 9 2009
Akiko A. Oohata
There are reports that secreted factor(s) are involved in prespore cell differentiation in Dictyostelium discoideum, but the structures and functions of the various factors have not been elucidated. Previously, we described two prespore cell-inducing factors in conditioned medium; one was a glycoprotein named prespore cell-inducing factor (, factor, or PSI-1), and the other, a heat stable dialyzable factor(s). In the present paper, we purified and characterized the most potent prespore cell-inducing activity in dialysates. The factor began to be secreted after the onset of starvation and stopped being secreted once the cells had aggregated, which was earlier than the onset of the , factor gene expression. In addition, unlike , factor, its secretion did not appear to depend on activation of protein kinase A. Interestingly, the purified factor not only induced prespore cell specific genes such as pspA and cotC but also a prestalk-cell specific gene, ecmB in vitro. The purified factor is tentatively designated polyketide-like factor (PLF), because it seems to be a novel polyketide with 208 Da. Half maximal induction of prespore cell was obtained with 26 nmol/L of PLF. We propose that PLF plays a key role in the acquisition of differentiation commitment, before the , factor induces specifically prespore cell differentiation. [source]


Mi-2 chromatin remodeling factor functions in sensory organ development through proneural gene repression in Drosophila

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 7 2006
Yasutoyo Yamasaki
Mi-2, the central component of the nucleosome remodeling and histone deacetylation (NuRD) complex, is known as an SNF2-type ATP-dependent nucleosome remodeling factor. No morphological mutant phenotype of Drosophila Mi-2 (dMi-2) had been reported previously; however, we found that rare escapers develop into adult flies showing an extra bristle phenotype. The dMi-2 enhanced the phenotype of acHw49c, which is a dominant gain-of-function allele of achaete (ac) and produces extra bristles. Consistent with these observations, the ac -expressing proneural clusters were expanded, and extra sensory organ precursors (SOP) were formed in the dMi-2 mutant wing discs. Immunostaining of polytene chromosomes showed that dMi-2 binds to the ac locus, and dMi-2 and acetylated hisotones distribute on polytene chromosomes in a mutually exclusive manner. The chromatin immunoprecipitation assay of the wing imaginal disc also demonstrated a binding of dMi-2 on the ac locus. These results suggest that the Drosophila Mi-2/NuRD complex functions in neuronal differentiation through the repression of proneural gene expression by chromatin remodeling and histone deacetylation. [source]


An endoderm-specific transcriptional enhancer from the mouse Gata4 gene requires GATA and homeodomain protein,binding sites for function in vivo

DEVELOPMENTAL DYNAMICS, Issue 10 2009
Anabel Rojas
Abstract Several transcription factors function in the specification and differentiation of the endoderm, including the zinc finger transcription factor GATA4. Despite its essential role in endoderm development, the transcriptional control of the Gata4 gene in the developing endoderm and its derivatives remains incompletely understood. Here, we identify a distal enhancer from the Gata4 gene, which directs expression exclusively to the visceral and definitive endoderm of transgenic mouse embryos. The activity of this enhancer is initially broad within the definitive endoderm but later restricts to developing endoderm-derived tissues, including pancreas, glandular stomach, and duodenum. The activity of this enhancer in vivo is dependent on evolutionarily-conserved HOX- and GATA-binding sites, which are bound by PDX-1 and GATA4, respectively. These studies establish Gata4 as a direct transcriptional target of homeodomain and GATA transcription factors in the endoderm and support a model in which GATA4 functions in the transcriptional network for pancreas formation. Developmental Dynamics 238:2588,2598, 2009. © 2009 Wiley-Liss, Inc. [source]


Diverse developmental mechanisms contribute to different levels of diversity in horned beetles

EVOLUTION AND DEVELOPMENT, Issue 3 2005
Armin P. Moczek
Summary An ongoing challenge to evolutionary developmental biology is to understand how developmental evolution on the level of populations and closely related species relates to macroevolutionary transformations and the origin of morphological novelties. Here we explore the developmental basis of beetle horns, a morphological novelty that exhibits remarkable diversity on a variety of levels. In this study, we examined two congeneric Onthophagus species in which males develop into alternative horned and hornless morphs and different sexes express marked sexual dimorphism. In addition, both species differ in the body region (head vs. thorax) that develops the horn. Using a comparative morphological approach we show that prepupal growth of horn primordia during late larval development, as well as reabsorption of horn primordia during the pupal stage, contribute to horn expression in adults. We also show that variable combinations of both mechanisms are employed during development to modify horn expression of different horns in the same individual, the same horn in different sexes, and different horns in different species. We then examine expression patterns of two transcription factors, Distal-less (Dll) and aristaless (al), in the context of prepupal horn growth in alternative male morphs and sexual dimorphisms in the same two species. Expression patterns are qualitatively consistent with the hypothesis that both transcription factors function in the context of horn development similar to their known roles in patterning a wide variety of arthropod appendages. Our results suggest that the origin of morphological novelties, such as beetle horns, rests, at least in part, on the redeployment of already existing developmental mechanisms, such as appendage patterning processes. Our results also suggest, however, that little to no phylogenetic distance is needed for the evolution of very different modifier mechanisms that allow for substantial modulation of trait expression at different time points during development in different species, sexes, or tissue regions of the same individual. We discuss the implications of our results for our understanding of the evolution of horned beetle diversity and the origin and diversification of morphological novelties. [source]