Home About us Contact | |||
Factor Binding Motifs (factor + binding_motif)
Kinds of Factor Binding Motifs Selected AbstractsTranscriptional signatures in response to wheat germ agglutinin and starvation in Drosophila melanogaster larval midgutINSECT MOLECULAR BIOLOGY, Issue 1 2009H.-M. Li Abstract One function of plant lectins such as wheat germ agglutinin is to serve as defences against herbivorous insects. The midgut is one critical site affected by dietary lectins. We observed marked cellular, structural and gene expression changes in the midguts of Drosophila melanogaster third instar larvae that were fed wheat germ agglutinin. Some of these changes were similar to those observed in the midguts of starved D. melanogaster. Dietary wheat germ agglutinin caused shortening, branching, swelling, distortion and in some cases disintegration of the midgut microvilli. Starvation was accompanied primarily by shortening of the microvilli. Microarray analyses revealed that dietary wheat germ agglutinin evoked differential expression of 61 transcripts; seven of these were also differentially expressed in starved D. melanogaster. The differentially transcribed gene clusters in wheat germ agglutinin-fed larvae were associated with (1) cytoskeleton organization; (2) digestive enzymes; (3) detoxification reactions; and (4) energy metabolism. Four possible transcription factor binding motifs were associated with the differentially expressed genes. One of these exhibited substantial similarity to MyoD, a transcription factor binding motif associated with cellular structures in mammals. These results are consistent with the hypothesis that wheat germ agglutinin caused a starvation-like effect and structural changes of midgut cells of D. melanogaster third-instar larvae. [source] Proinflammatory phenotype with imbalance of KLF2 and RelA: Risk of childhood stroke with sickle cell anemia,AMERICAN JOURNAL OF HEMATOLOGY, Issue 1 2010Judy Enenstein Altered inflammation signaling within the cerebral vasculature may be an important risk factor for stroke in children with sickle cell anemia (SCA). This study examines how differential expression of NF,B/p65 (RelA), KLF2, and other transcription factors may act as switches in inflammation signaling leading to observed differences between non-SCA (NS) African Americans and African Americans with SCA who are either at risk (AR) or not at risk (NAR) of childhood stroke based on occurrence of Circle of Willis disease. Clover/Transfac analysis was used to identify overrepresented transcription factor binding motifs on genes associated with inflammation. Transcription factor binding motifs for the NF,B family and RFX1 were overrepresented on inflammation signaling gene set analysis. Variations in protein expression were determined by flow cytometry of blood outgrowth endothelial cells (BOECs) from NS, AR, and NAR donors and Western blots of protein extracts from both unstimulated and TNF,/IL1,-stimulated BOECs. BOECs from patients with SCA had more cytoplasmic-derived RelA compared with NS BOECs. Sickle BOECs also had heightened responses to inflammatory stimuli compared with NS BOECs, as shown by increased nuclear RelA, and intracellular adhesion molecule (ICAM) response to TNF,/IL1, stimulation. Multiple control points in RelA signaling were associated with risk of childhood stroke. The ratio of proinflammatory factor RelA to anti-inflammatory factor KLF2 was greater in BOECs from AR donors than NS donors. Group risk of childhood stroke with SCA was greatest among individuals who exhibited increased expression of proinflammatory transcription factors and decreased expression of transcription factors that suppress inflammation. Am. J. Hematol. 2010. © 2009 Wiley-Liss, Inc. [source] Resistin induces expression of proinflammatory cytokines and chemokines in human articular chondrocytes via transcription and messenger RNA stabilizationARTHRITIS & RHEUMATISM, Issue 7 2010Zhiqi Zhang Objective To elucidate the effects of resistin on human articular chondrocytes and to generate a picture of their regulation at the transcriptional and posttranscriptional levels. Methods Human articular chondrocytes were cultured with resistin. Changes in gene expression were analyzed at various doses and times. Cells were also treated with the transcription inhibitor actinomycin D after resistin treatment or with the NF-,B inhibitor IKK-NBD before resistin treatment. Gene expression was tested by quantitative real-time polymerase chain reaction. Computational analysis for transcription factor binding motifs was performed on the promoter regions of differentially expressed genes. TC-28 chondrocytes were transfected with CCL3 and CCL4 promoter constructs, pNF-,B reporter, and NF-,B and CCAAT/enhancer binding protein , (C/EBP,) expression vectors with or without resistin. Results Resistin-treated human articular chondrocytes increased the expression of cytokines and chemokines. Levels of messenger RNA (mRNA) for matrix metalloproteinase 1 (MMP-1), MMP-13, and ADAMTS-4 also increased, while type II collagen ,1 (COL2A1) and aggrecan were down-regulated. The cytokine and chemokine genes could be categorized into 3 groups according to the pattern of mRNA expression over a 24-hour time course. One pattern suggested rapid regulation by mRNA stability. The second and third patterns were consistent with transcriptional regulation. Computational analysis suggested the transcription factors NF-,B and C/EBP, were involved in the resistin-induced up-regulation. This prediction was confirmed by the cotransfection of NF-,B and C/EBP, and the IKK-NBD inhibition. Conclusion Resistin has diverse effects on gene expression in human chondrocytes, affecting chemokines, cytokines, and matrix genes. Messenger RNA stabilization and transcriptional up-regulation are involved in resistin-induced gene expression in human chondrocytes. [source] Computational Biology: Toward Deciphering Gene Regulatory Information in Mammalian GenomesBIOMETRICS, Issue 3 2006Hongkai Ji Summary Computational biology is a rapidly evolving area where methodologies from computer science, mathematics, and statistics are applied to address fundamental problems in biology. The study of gene regulatory information is a central problem in current computational biology. This article reviews recent development of statistical methods related to this field. Starting from microarray gene selection, we examine methods for finding transcription factor binding motifs and cis -regulatory modules in coregulated genes, and methods for utilizing information from cross-species comparisons and ChIP-chip experiments. The ultimate understanding of cis -regulatory logic in mammalian genomes may require the integration of information collected from all these steps. [source] |