Facies

Distribution by Scientific Domains
Distribution within Earth and Environmental Science

Kinds of Facies

  • amphibolite facy
  • depositional facy
  • eclogite facy
  • granulite facy
  • greenschist facy
  • lacustrine facy
  • sedimentary facy
  • seismic facy
  • upper amphibolite facy

  • Terms modified by Facies

  • facy analysis
  • facy assemblage
  • facy association
  • facy change
  • facy condition
  • facy distribution
  • facy metamorphism

  • Selected Abstracts


    Embryonic holoprosencephaly: pathology and phenotypic variability

    CONGENITAL ANOMALIES, Issue 4 2006
    Shigehito Yamada
    ABSTRACT Holoprosencephaly (HPE) is one of the major brain anomalies caused by the failure of cleavage of the prosencephalon during the early stage of development. Over 200 cases of HPE in the Kyoto Collection of Human Embryos were observed grossly and histologically, with special emphasis on the anomalies of the brain, face and eye. The facial anomalies of HPE human embryos after Carnegie stage (CS) 18 could be classified into cyclopia, synophthalmia, ethmocephaly, cebocephaly, and premaxillary agenesis, similarly as the classical classification for postnatal cases. On the other hand, HPE embryos at CS 13,17 showed some characteristic facies which are different from those in older embryos. In the present paper, pathology and phenotypic variability in HPE embryos were discussed from the embryopathological point of view. Recently, the molecular mechanism of HPE has been clarified by the techniques of gene manipulation, and various HPE genes have been identified by gene analysis of familial HPE cases. HPE is one of the major CNS anomalies which have been extensively studied and provides a clue to the mechanisms of normal and abnormal development of craniofacial structures. [source]


    Controls on modern alluvial fan processes in the central Alps, northern Italy

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2004
    Giovanni B. Crosta
    Abstract Alluvial fan development in Alpine areas is often affected by catastrophic sedimentary processes associated with extreme ,oods events, causing serious risks for people living on the fans. Hazard assessment in these areas depends on proper identi,cation of the dominant sedimentary processes on the fans. Data from a set of 209 alluvial fans from the central Alps of Italy are presented in this paper and analysed with the help of various statistical techniques (linear regression, principal components analysis, cluster analysis, discriminant analysis and logistic regression). First, we used modern sedimentary facies and historical records (,ood events since 15th century), to distinguish between the two dominant sedimentary processes on alluvial fans: debris ,ows and stream,ows. Then, in order to analyse the main controls on past and present fan processes, 36 morphological, geological and land-use variables were analysed. As with observations for arid-environment fans, catchment morphology is the most in,uential factor in the study area, whereas geology and land use are minor controls. The role of climatic change and landsliding within the catchments also seems to be very important and is discussed. Statistical techniques also help in differentiating groups of alluvial fans by sets of controlling factors, including stage and type of evolution. Finally, by using discriminant analysis and logistic regression, we classi,ed alluvial fans according to the dominant sedimentary process, with a success rate ranging between 75 and 92 per cent. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Rhodomyrtophyllum reticulosum (Rossm.) Knobloch & Z. Kva,ek , ein bedeutendes eozänes Florenelement im Tertiär Mitteleuropas

    FEDDES REPERTORIUM, Issue 1-2 2003
    U. Glinka Dipl.-Biol.
    Nach kritischer Überprüfung blattepidermaler und blattmorphologischer Merkmalskomplexe an Blättern und Blattresten von RhodomyrtophyllumRüffle & Jähnichen aus dem Weißelster-Becken und seiner Randgebiete in Mitteldeutschland (Raum Halle,Leipzig,Borna,Altenburg,Zeitz,Zwickau und Ostthüringen) wird nachgewiesen, dass es sich bei den Blattresten um Vertreter einer einzigen Art handelt. Die Untersuchungen stützen sich auf 465 Fossilien aus meist kohlig- oder tonig-schluffiger Facies. In einer erweiterten Diagnose wird neben Grundformen mit typischen Charakteristiken die morphologische und blattanatomische Variationsbreite angeführt, die in den natürlichen Grenzen einer Species liegt. Untersuchungen an Blättern weiterer Fundorte in Europa kommen zum gleichen Ergebnis. An Arten von 21 Gattungen rezenter Myrtaceae erfolgen detaillierte Untersuchungen der Blattmorphologie und vor allem der Epidermisstruktur, die markante Ähnlichkeiten zur fossilen Sippe zeigen, was besonders bei Arten der Gattungen SyzygiumGaertn. und Eugenia L. erkennbar ist. Rhodomyrtophyllum reticulosum (Rossm.) Knobloch & Z. Kva,ek , a significant Eocene floral element in the Tertiary of Central Europe The leaf remains of RhodomyrtophyllumRüffle & Jähnichen from the Eocene occurring in the Weißelster Basin in central Germany (area Halle,Leipzig,Borna,Altenburg,Zeitz,Zwickau and Eastern Thuringia) have been proven to belong to a single species. This has been documented by analysing gross morphology and epidermical structure of 465 fossil leaves and leaf fragments from coal sand coal-silt facies. An emended diagnosis characterises besides basic forms with typical gross morphology and leaf anatomy, also extreme specimens within the limits of natural variability of Rhodomyrtophyllumreticulosum. These results correspond with studies from other European localities. Furthermore, detailed analyses of leaf morphology and epidermal structure of 21 recent species of the Myrtaceae are given. These demonstrate analogies of the fossil taxon studied especially among representatives of SyzygiumGaertn. and Eugenia L. [source]


    Using geophysical information to define benthic habitats in a large river

    FRESHWATER BIOLOGY, Issue 1 2006
    DAVID L. STRAYER
    Summary 1. Most attempts to describe the distribution of benthic macroinvertebrates in large rivers have used local (grab-scale) assessments of environmental conditions, and have had limited ability to account for spatial variation in macroinvertebrate populations. 2. We tested the ability of a habitat classification system based on multibeam bathymetry, side-scan sonar, and chirp sub-bottom seismics to identify large-scale habitat units (,facies') and account for macroinvertebrate distribution in the Hudson River, a large tidal river in eastern New York. 3. Partial linear regression analysis showed that sediment facies were generally more effective than local or positional variables in explaining various aspects of the macroinvertebrate community (community structure, density of all invertebrates, density of fish forage, density of a pest species ,Dreissena polymorpha). 4. Large-scale habitats may be effective at explaining macroinvertebrate distributions in large rivers because they are integrative and describe habitat at the spatial scales of dominant controlling processes. [source]


    Early Holocene Paleoindian deposits at Nall Playa, Oklahoma Panhandle, U.S.A.

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 1 2003
    Jason M. LaBelle
    Fieldwork conducted at the Nall North locale and the adjacent playa documents buried Paleoindian deposits and a stratigraphic sequence dating back to the late Pleistocene. Cultural debris recovered from the surface of Nall North includes bone, tools, and lithic flake debris. Two buried paleosols at the locale date to the early Holocene and hold high potential for Paleoindian materials. The Baker paleosol, a stabilized surface above the shoreline of the adjacent playa lake, dated between ca. 6870 and 7740 yr B.P., contains a rich cultural component of tools, flakes, and bone, and represents a potential surface for Angostura and Allen/Frederick artifacts. Located below the Baker soil is the Nall soil (dated to ca. 9650 yr B.P.) that probably represents a marsh facies of the playa fill. The Nall soil represents a potential surface for Plainview/Goshen-age artifacts, although excavations thus far have recovered no cultural debris. In the playa adjacent to the Nall North locality, a sequence dating between ca. 12,960 and 5310 yr B.P. documents localized spring flow into the playa during the late Pleistocene, followed by several thousand years of playa muds during the early Holocene, and the eventual drying of the playa in the middle Holocene. © 2003 Wiley Periodicals, Inc. [source]


    Bacterial formation of phosphatic laminites off Peru

    GEOBIOLOGY, Issue 3 2009
    E. T. ARNING
    Authigenic phosphatic laminites enclosed in phosphorite crusts from the shelf off Peru (10°01, S and 10°24, S) consist of carbonate fluorapatite layers, which contain abundant sulfide minerals including pyrite (FeS2) and sphalerite (ZnS). Low ,34Spyrite values (average ,28.8,) agree with bacterial sulfate reduction and subsequent pyrite formation. Stable sulfur isotopic compositions of sulfate bound in carbonate fluorapatite are lower than that of sulfate from ambient sea water, suggesting bacterial reoxidation of sulfide by sulfide-oxidizing bacteria. The release of phosphorus and subsequent formation of the autochthonous phosphatic laminites are apparently caused by the activity of sulfate-reducing bacteria and associated sulfide-oxidizing bacteria. Following an extraction,phosphorite dissolution,extraction procedure, molecular fossils of sulfate-reducing bacteria (mono- O -alkyl glycerol ethers, di- O -alkyl glycerol ethers, as well as the short-chain branched fatty acids i/ai -C15:0, i/ai -C17:0 and 10MeC16:0) are found to be among the most abundant compounds. The fact that these molecular fossils of sulfate-reducing bacteria are distinctly more abundant after dissolution of the phosphatic laminite reveals that the lipids are tightly bound to the mineral lattice of carbonate fluorapatite. Moreover, compared with the autochthonous laminite, molecular fossils of sulfate-reducing bacteria are: (1) significantly less abundant and (2) not as tightly bound to the mineral lattice in the other, allochthonous facies of the Peruvian crusts consisting of phosphatic coated grains. These observations confirm the importance of sulfate-reducing bacteria in the formation of the phosphatic laminite. Model calculations highlight that organic matter degradation by sulfate-reducing bacteria has the potential to liberate sufficient phosphorus for phosphogenesis. [source]


    An actualistic perspective into Archean worlds , (cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa

    GEOBIOLOGY, Issue 1 2008
    N. NOFFKE
    ABSTRACT Extensive microbial mats colonize sandy tidal flats that form along the coasts of today's Earth. The microbenthos (mainly cyanobacteria) respond to the prevailing physical sediment dynamics by biostabilization, baffling and trapping, as well as binding. This biotic,physical interaction gives rise to characteristic microbially induced sedimentary structures (MISS) that differ greatly from both purely physical structures and from stromatolites. Actualistic studies of the MISS on modern tidal flats have been shown to be the key for understanding equivalent fossil structures that occur in tidal and shelf sandstones of all Earth ages. However, until now the fossil record of Archean MISS has been poor, and relatively few specimens have been found. This paper describes a study location that displays a unique assemblage with a multitude of exceptionally preserved MISS in the 2.9-Ga-old Pongola Supergroup, South Africa. The ,Nhlazatse Section' includes structures such as ,erosional remnants and pockets', ,multidirected ripple marks', ,polygonal oscillation cracks', and ,gas domes'. Optical and geochemical analyses support the biogenicity of microscopic textures such as filamentous laminae or ,orientated grains'. Textures resembling filaments are lined by iron oxide and hydroxides, as well as clay minerals. They contain organic matter, whose isotope composition is consistent with carbon of biological origin. The ancient tidal flats of the Nhlazatse Section record four microbial mat facies that occur in modern tidal settings as well. We distinguish endobenthic and epibenthic microbial mats, including planar, tufted, and spongy subtypes. Each microbial mat facies is characterized by a distinct set of MISS, and relates to a typical tidal zone. The microbial mat structures are preserved in situ, and are consistent with similar features constructed today by benthic cyanobacteria. However, other mat-constructing microorganisms also could have formed the structures in the Archean tidal flats. [source]


    Mass-independent fractionation of sulfur isotopes in sulfides from the pre-3770 Ma Isua Supracrustal Belt, West Greenland

    GEOBIOLOGY, Issue 4 2006
    D. PAPINEAU
    ABSTRACT Redox chemistry of the coupled atmosphere,hydrosphere system has coevolved with the biosphere, from global anoxia in the Archean to an oxygenated Proterozoic surface environment. However, to trace these changes to the very beginning of the rock record presents special challenges. All known Eoarchean (c. 3850,3600 Ma) volcanosedimentary successions (i.e. supracrustal rocks) are restricted to high-grade gneissic terranes that seldom preserve original sedimentary structures and lack primary organic biomarkers. Although complicated by metamorphic overprinting, sulfur isotopes from Archean supracrustal rocks have the potential to preserve signatures of both atmospheric chemistry and metabolic fractionation from the original sediments. We present a synthesis of multiple sulfur isotope measurements (32S, 33S and 34S) performed on sulfides from amphibolite facies banded iron-formations (BIFs) and ferruginous garnet-biotite (metapelitic) schists from the pre-3770 Ma Isua Supracrustal Belt (ISB) in West Greenland. Because these data come from some of the oldest rocks of interpretable marine sedimentary origin, they provide the opportunity to (i) explore for possible biosignatures of sulfur metabolisms in early life; (ii) assess changes in atmospheric redox chemistry from ,3.8 Ga; and (iii) lay the groundwork to elucidate sulfur biogeochemical cycles on the early Earth. We find that sulfur isotope results from Isua do not unambiguously indicate microbially induced sulfur isotopic fractionation at that time. A significantly expanded data set of ,33S analyses for Isua dictates that the atmosphere was devoid of free oxygen at time of deposition and also shows that the effects of post-depositional metamorphic remobilization and/or dilution can be traced in mass-independently fractionated sulfur isotopes. [source]


    Sediment Distribution Around Glacially Abraded Bedrock Landforms (Whalebacks) at Lago Tranquilo, Chile

    GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 3 2005
    Neil F. Glasser
    Whalebacks are convex landforms created by the smoothing of bedrock by glacial processes. Their formation is attributed to glacial abrasion either by bodies of subglacial sediment sliding over bedrock or by individual clasts contained within ice. This paper reports field measurements of sediment depth around two whaleback landforms in order to investigate the relationship between glacigenic deposits and whaleback formation. The study site, at Lago Tranquilo in Chilean Patagonia, is situated within the Last Glacial Maximum (LGM) ice limits. The two whalebacks are separated by intervening depressions in which sediment depths are generally 0.2 to 0.3 m. Two facies occur on and around the whalebacks. These facies are: (1) angular gravel found only on the surface of the whalebacks, interpreted as bedrock fracturing in response to unloading of the rock following pressure release after ice recession, and (2) sandy boulder-gravel in the sediment-filled depressions between the two whalebacks, interpreted as an ice-marginal deposit, with a mixture of sediment types including basal glacial and glaciofluvial sediment. Since the whalebacks have heavily abraded and striated surfaces but are surrounded by only a patchy and discontinuous layer of sediment, the implication is that surface abrasion of the whalebacks was achieved primarily by clasts entrained in basal ice, not by subglacial till sliding. [source]


    Depositional environment of Sirius Group sediments, Table Mountain, Dry Valleys area, Antarctica

    GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 1 2002
    James R. Goff
    Outcrops and cores of the Sirius Group sediments were studied at Table Mountain, Dry Valleys area, Antarctica. These sediments form a surficial veneer at least 9.5 m thick. Three facies , a gravelly sandstone, a sandstone, and a sandy conglomerate , are mapped and described from 13 outcrops and three cores. The gravelly sandstone, constituting 13%of all cored material, is bimodal with matrix-supported clasts comprising 5,33%of the facies. Fabric analysis indicates that it was deposited primarily by lodgment from glacial ice but with minor elements of meltout and flow. The sandstone facies, constituting 77%of all cored material, is a well-sorted, fine- to medium-grained sand, which commonly has laminated bedding. It is predominantly a glaciofluvial deposit but has some glaciolacustrine elements. The sandy conglomerate, constituting 10%of all cored material, is a minor facies. It is massive and clast-supported. It was deposited in a high-energy environment suggestive of subglacial meltwater channels. Sirius Group sediments at Table Mountain are the result of wet-based ice advancing and retreating over waterlain deposits. This is consistent with an advancing ice mass in climatic conditions that were warmer than present. The majority of the sediments were deposited by alpine ice following a similar pathway to the present-day Ferrar Glacier and as such the depositional environment is one that concurs with evidence of a stable East Antarctic Ice Sheet approach. At Table Mountain, the predominantly glaciofluvial and glaciolacustrine facies is inferred to represent a more distal part of the Sirius Group environment than that seen at other outcrops in the Dry Valleys. [source]


    The Geologic Basis for a Reconstruction of a Grounded Ice Sheet in McMurdo Sound, Antarctica, at the Last Glacial Maximum

    GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 2-3 2000
    George H. Denton
    A grounded ice sheet fed from the Ross Embayment filled McMurdo Sound at the last glacial maximum (LGM). This sheet deposited the little-weathered Ross Sea drift sheet, with far-traveled Transantarctic Mountains (TAM) erratics, on lower slopes of volcanic islands and peninsulas in the Sound, as well as on coastal forelands along the TAM front. The mapped upper limit of this drift, commonly marked by a distinctive moraine ridge, shows that the ice-sheet surface sloped landward across McMurdo Sound from 710 m elevation at Cape Crozier to 250 m in the eastern foothills of the Royal Society Range. Ice from the Ross Embayment flowed westward into the sound from both north and south of Ross Island. The northern flowlines were dominant, deflecting the southern flowlines toward the foothills of the southern Royal Society Range. Ice of the northern flowlines distributed distinctive kenyte erratics, derived from western Ross Island, in Ross Sea drift along the TAM front between Taylor and Miers Valleys. Lobes from grounded ice in McMurdo Sound blocked the mouths of TAM ice-free valleys, damming extensive proglacial lakes. A floating ice cover on each lake formed a conveyor that transported glacial debris from the grounded ice lobes deep into the valleys to deposit a unique glaciolacustrine facies of Ross Sea drift. The ice sheet in McMurdo Sound became grounded after 26,860 14C yr bp. It remained near its LGM position between 23,800 14C yr bp and 12,700 14C yr bp. Recession was then slow until sometime after 10,794 14C yr bp. Grounded ice lingered in New Harbor in the mouth of Taylor Valley until 8340 14C yr bp. The southward-retreating ice-sheet grounding line had penetrated deep into McMurdo Sound by 6500 14C yr bp. The existence of a thick ice sheet in McMurdo Sound is strong evidence for widespread grounding across the Ross Embayment at the LGM. Otherwise, the ice-sheet surface would not have sloped landward, nor could TAM erratics have been glacially transported westward into McMurdo Sound from farther offshore in the Ross Embayment. [source]


    From the intra-desert ridges to the marine carbonate island chain: middle to late Permian (Upper Rotliegend,Lower Zechstein) of the Wolsztyn,Pogorzela high, west Poland

    GEOLOGICAL JOURNAL, Issue 2-3 2010
    Hubert Kiersnowski
    Abstract The tectonic Wolsztyn,Pogorzela palaeo-High (WPH) is the south-eastern termination of the Brandenburg,Wolsztyn High (western Poland), which during Late Permian times was an intra-basin ridge surrounded by Upper Rotliegend sedimentary basins within the Southern Permian Basin. The geological history and structural framework of the WPH are complex. The High belongs to the Variscan Externides, consisting at present of strongly folded, faulted and eroded Viséan to Namurian flysch deposits capped by a thick cover of Upper Carboniferous,Lower Permian volcanic rocks. This sedimentary-volcanic complex was strongly fragmented and vertically differentiated by tectonic movements and subsequently eroded, resulting in the deposition of coarse clastics surrounding uplifted tectonic blocks. During late Rotliegend time, arid climatic conditions significantly influenced occurrences of specific facies assemblages: alluvial, fluvial, aeolian and playa. Sedimentological study helped to recognize the interplay of tectonic and palaeoclimatic factors and to understand the phenomenon of aeolian sandstones interbedded with coarse deposits of alluvial cones close to fault scarps. Subsequent tectonic and possible thermal subsidence of the studied area was synchronous with inundation by the Zechstein Sea. The rapid inundation process allowed for the preservation of an almost perfectly protected Uppermost Rotliegend landscape. Based on 3D seismic data from the base Zechstein reflector, a reconstruction of Rotliegend palaeogeomorphology was carried out, which shows examples of tectonic rejuvenation of particular tectonic blocks within the WPH area before inundation by the Zechstein Sea. The inundation led to the deposition of the marine Kupferschiefer Shale followed by the Zechstein Limestone. In the deeper parts of the basin the latter is developed in thin basinal facies: in shallow parts (e.g. uplifted tectonic blocks forming in some cases islands), carbonate buildups were formed. The remarkable thickness of those buildups (bryozoan reefs) is interpreted as due to stable tectonic subsidence together with a rise of sea level. A detailed study of carbonate buildups has showed that their internal structure reflects changes in shallow marine environments and even emersion events, caused by sea-level oscillations and tectonic movements of the reef substrate. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    A high-resolution relative time scale for the Viséan Stage (Carboniferous) of the Kulm Basin (Rhenish Mountains, Germany)

    GEOLOGICAL JOURNAL, Issue 3 2009
    Dieter Korn
    Abstract The Viséan (Carboniferous) sedimentary succession of the basinal Kulm facies (Rhenish Mountains) was investigated in detail in order to achieve a high-resolution stratigraphic subdivision and correlation. Additionally, the ranges of fossil index taxa (ammonoids), fossil marker beds, volcaniclastic horizons and sedimentary features (e.g. colour changes) were integrated in the correlation. As a result, a comprehensive database was compiled, which contains 190 stratigraphic events of the Viséan interval of this area. Several sections are almost completely composed of shales, which are regarded to represent a slow but constant basinal background sedimentation of the Kulm facies. The thickness of lithological homogeneous sections thus indicates an approximately linear record of time and the average thicknesses of biozones and positions of stratigraphic events can easily be calculated from the compiled database. The result is an approximately time-linear biostratigraphic scale for the Viséan Stage of the Kulm Basin. Given a numerical length of the Viséan Stage of ca. 19,Ma, 190 stratigraphic events give a mean resolution of 100,000 years. This is unique in Palaeozoic stratigraphy. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Sedimentary and faunal events revealed by a revised correlation of post-glacial Hirnantian (Late Ordovician) strata in the Welsh Basin, UK

    GEOLOGICAL JOURNAL, Issue 3 2009
    Jeremy R. Davies
    Abstract The discovery of a previously unrecognized unconformity and of new faunas in the type Llandovery area underpins a revised correlation of Hirnantian strata in mid Wales. This has revealed the sedimentary and faunal events which affected the Lower Palaeozoic Welsh Basin during the global rise in sea level that followed the end-Ordovician glacial maximum and has allowed their interpretation in the context of local and global influences. In peri-basinal shelfal settings the onset of post-glacial deepening is recorded by an unfossiliferous, transgressive shoreface sequence (Cwm Clyd Sandstone and Garth House formations) which rests unconformably on Rawtheyan rocks, deformed during an episode of pre-Hirnantian tectonism. In the deep water facies of the basin centre, this same sequence boundary is now recognized as the contact between fine-grained, re-sedimented mudstones and an underlying regressive sequence of turbidite sandstones and conglomerates; it is at a level lower than previously cited and calls into question the established lithostratigraphy. In younger Hirnantian strata, graptolites associated with the newly recognized Ystradwalter Member (Chwefri Formation) demonstrate that this distal shelf unit correlates with the persculptus graptolite-bearing Mottled Mudstone Member of the basinal succession. Together these members record an important macrofaunal recolonization of the Welsh Basin and mark a key event in the post-glacial transgression. Further deepening saw the establishment of a stratified water column and the imposition of anoxic bottom water conditions across the basin floor. These post-glacial Hirnantian events are consistent with the re-establishment of connections between a silled Welsh Basin and the open Iapetus Ocean. However, a comparison with other areas suggests that each event records a separate deepening episode within a pulsed glacio-eustatic transgression, while also reflecting changes in post-glacial climate and patterns of oceanic circulation and associated biotic flux. British Geological Survey © NERC 2009. All rights reserved. [source]


    Amphibolite and blueschist,greenschist facies metamorphism, Blue Mountain inlier, eastern Jamaica

    GEOLOGICAL JOURNAL, Issue 5 2008
    Richard N. Abbott Jr
    Abstract Cretaceous (possibly older) metamorphic rock occurs mainly in the Blue Mountain inlier in eastern Jamaica. Fault-bounded blocks reveal two styles of metamorphism, Westphalia Schist (upper amphibolite facies) and Mt. Hibernia Schist (blueschist (BS),greenschist (GS) facies). Both Westphalia Schist and Mt. Hibernia Schist preserve detailed records of retrograde P,T paths. The paths are independent, but consistent with different parts of the type-Sanbagawa metamorphic facies series in Japan. For each path, phase relationships and estimated P,T conditions support a two-stage P,T history involving residence at depth, followed by rapid uplift and cooling. Conditions of residence vary depending on the level in a tectonic block. For the critical mineral reaction (isograd) in Westphalia Schist, conditions were P ,7.5,kbars, T ,600°C (upper amphibolite facies). Retrograde conditions in Hibernia Schist were P,=,2.6,3.0,kbars, T,=,219,237°C for a(H2O),=,0.8,1.0 (GS facies). Mt. Hibernia Schist may represent a volume of rock that was separated and uplifted at an early time from an otherwise protracted P,T path of the sort that produced the Westphalia Schist. Reset K,Ar ages for hornblende and biotite indicate only that retrograde metamorphism of Westphalia Schist took place prior to 76.5,Ma (pre-Campanian). Uplift may have commenced with an Albian,Aptian (,112,Ma) orogenic event. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Quantitative tests for stratigraphic cyclicity

    GEOLOGICAL JOURNAL, Issue 4 2008
    R. J. Bailey
    Abstract Periodic Milankovitch (M-) orbital forcing provides an explanation for subjectively recognized short-term repetition of lithofacies-,cycles'-in the stratigraphic record. Tests of this explanation often find no order in the lithofacies and/or no regularity in the recurrence of lithofacies. This does not disprove the influence of M-forcing, but a sedimentary response in terms of irregular M-forced ,cycles' is indistinguishable from one in which repetition of facies is not M-forced. Use of such cycles in time calibration is correspondingly suspect. Stricter, dimensional cyclicity invokes Sander's Rule, which suggests periodicity in sedimentation, for which M-forcing provides an obvious explanation. Time calibration on the basis of strict cyclicity thus appears more dependable. Objective tests for regular M-forced stratigraphic cyclicity commonly depend upon spectral analyses. Such tests are not unambiguous. Bilogarithmic thickness/frequency plots derived from objective layer thickness inventories (LTI) provide an alternative. Commonly, such plots show power-law relationships that preclude dimensional M-cyclicities. By contrast, a model data series that perfectly encodes the M-cyclic fluctuations in terrestrial insolation generates a strongly inflected, non-power-law LTI plot. Power-law plots result where the model data series is decimated by random hiatuses, with numbers and durations tuned to M-cycle frequencies. It seems improbable that natural data series record such tuning. The general absence of strict cyclicity in the M-frequency range is more likely to reflect the nonlinear response of sedimentary systems to cyclic M-forcing of insolation. Interestingly, when applied to the classically cyclic lacustrine Triassic sediments of the Newark Basin, USA, the LTI test suggests a decimated record, preserving some evidence of M-cyclicity. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Triassic metasedimentary successions across the boundary between the southern Apennines and the Calabrian Arc (northern Calabria, Italy)

    GEOLOGICAL JOURNAL, Issue 2 2005
    A. Iannace
    Abstract The boundary area between the Apenninic fold-and-thrust belt and the crystalline Calabrian Arc, located around Sangineto in northern Calabria, has been investigated. New geological mapping in the Sant'Agata area has been performed on the Triassic successions traditionally attributed to the metasedimentary San Donato Unit. This, coupled with a reappraisal of the stratigraphy and tectonics of coeval successions present more to the south in the Cetraro Unit, results in a new reconstruction of the Triassic evolution of all the metasedimentary successions found in the region. Four informal stratigraphic units have been distinguished in the S. Agata area. The lowest one (Unit A) consists of well-bedded metalimestones and bioturbated marly limestones that correlate with Ladinian,Carnian carbonates in nearby areas. A second unit (Unit B), never recognized before, contains a complex alternation of dolomites, phyllites and some meta-arenites containing several beds of Cavernoso facies, attributed to the Carnian. They grade upward to platform and platform-margin dolomites of Norian,Rhaetian age (Unit C) that in turn are replaced upward and laterally by a fourth unit (Unit D) consisting of well-bedded, dark dolomites and metalimestones with marly interlayers locally found as resedimented large blocks in slope conglomerates. Unit D correlates with Rhaetian,Liassic beds in nearby areas. Several pieces of evidence of post-metamorphic contractional tectonics, with 140°N and 30°N trends, are found together with evidence of SW-directed extension. The siliciclastic Carnian beds of Unit B are correlated with the phyllites of Cetraro, formerly believed to be Middle Triassic; moreover, it is suggested that in the Cetraro area Unit C is almost totally replaced by Unit D. This demonstrates that the former distinction between the two tectonic units in the whole area has to be discarded. We have made a general palaeoenvironmental reconstruction which progresses laterally, during Ladinian,Carnian times, from (i) a coastal, mixed siliciclastic,carbonate,evaporitic area at Cetraro to (ii) a transitional carbonate shelf where siliciclastic input was only episodic, and finally to (iii) a bioconstructed margin which was later replaced by a steepened margin created by tectonic instability. Starting from the Norian, subsidence shifted toward the former coastal area where an intraplatform, restricted basin developed. The proposed stratigraphy corresponds closely to the Alpujarride units of the Betic Cordillera, Spain. Moreover, it is shown that strong affinities also exist, in terms of the structural framework, with the metamorphic units of Tuscany and Liguria. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Lower Carboniferous peritidal carbonates and associated evaporites adjacent to the Leinster Massif, southeast Irish Midlands

    GEOLOGICAL JOURNAL, Issue 2 2005
    Zsolt R. Nagy
    Abstract Analysis of a 275,m-thick section in the Milford Borehole, GSI-91-25, from County Carlow, Ireland, has revealed an unusual sequence of shallow subtidal, peritidal and sabkha facies in rocks of mid?-late Chadian to late Holkerian (Viséan, Lower Carboniferous) age. Sedimentation occurred on an inner ramp setting, adjacent to the Leinster Massif. The lower part of the sequence (late Chadian age) above the basal subtidal bioclastic unit is dominated by oolite sand facies associations. These include a lower regressive dolomitized, oolitic peloidal mobile shoal, and an upper, probably transgressive, backshoal oolite sand. A 68,m-thick, well-developed peritidal sequence is present between the oolitic intervals. These rocks consist of alternating stromatolitic fenestral mudstone, dolomite and organic shale, with evaporite pseudomorphs and subaerial exposure horizons containing pedogenic features. In the succeeding Arundian,Holkerian strata, transgressive,regressive carbonate units are recognized. These comprise high-energy, backshoal subtidal cycles of argillaceous skeletal packstones, bioclastic grainstones with minor oolites and algal wackestones to grainstones and infrequent algal stromatolite horizons. The study recognizes for the first time the peritidal and sabkha deposits in Chadian rocks adjacent to the Leinster Massif in the eastern Irish Midlands. These strata appear to be coeval with similar evaporite-bearing rocks in County Wexford that are developed on the southern margin of this landmass, and similar depositional facies exist further to the east in the South Wales Platform, south of St. George's Land, and in Belgium, south of the Brabant Massif. The presence of evaporites in the peritidal facies suggests that dense brines may have formed adjacent to the Leinster Massif. These fluids may have been involved in regional dolomitization of Chadian and possibly underlying Courceyan strata. They may also have been a source of high salinity fluids associated with nearby base-metal sulphide deposits. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Pendleian (early Serpukhovian) marine carbonates from SW Spain: sedimentology, biostratigraphy and depositional model

    GEOLOGICAL JOURNAL, Issue 1 2004
    P. Cózar
    Abstract The San Antonio,La Juliana tectono-sedimentary unit contains the only Namurian marine carbonates in the southwestern part of the Iberian Peninsula. The analysis of this unit is fundamental in understanding the sedimentary evolution and tectonic movements which operated during the Namurian in this area. Using foraminifera the succession has been assigned to two biozones (Zones 17 and 18), both occurring in the Pendleian (early Namurian). Seven stratigraphic sections have been analysed: San Antonio, Burjadillo, Lavadero de la Mina, Cornuda, Lozana, Caridad and Via Crucis. The stratigraphic succession of the San Antonio,La Juliana Unit consists of olistolites in the basal part, with common debris-flow deposits (mainly of carbonates, with minor siliciclastic rocks), and turbidites, all of them embedded in shales. These rocks, interpeted as slope deposits, pass up into shallow-water platform facies, with sediments characteristic of the inner platform and tidal flats. Above these rocks, terrigenous deltaic deposits occur. Thus, the stratigraphic sections show an overall shallowing-upward trend. The isolation of some outcrops, and the duplication and absence of some parts of the stratigraphic succession are explained by tectonic movements. Overall, tectonic factors seem to be the main control rather than glacio-eustatic or autocyclic processes, and sedimentation took place in a strike-slip regime. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Mantle-derived and crustal melts dichotomy in northern Greece: spatiotemporal and geodynamic implications

    GEOLOGICAL JOURNAL, Issue 1 2004
    Diego Perugini
    Abstract Two distinct groups of subduction-related (orogenic) granitoid rocks, one Jurassic and the other Tertiary, occur in the area between the Vardar (Axios) Zone and the Rhodope Massif in northern Greece. The two groups of granitoids differ in many respects. The first group shows evolved geochemical characters, it is not associated with mafic facies, and evidence of magmatic interaction between mantle- and crustal-derived melts is lacking. The second group has less evolved geochemical characters, it is associated with larger amount of mafic facies, and magmatic interaction processes between mantle-derived and crustal melts are ubiquitous as evidenced by mafic microgranular enclaves and synplutonic dykes showing different enrichment in K2O, Ti, and incompatible elements. This kind of magmatism can be attributed to the complex geodynamic evolution of the area. In particular, we suggest that two successive subduction events related to the closure of the Vardar and the Pindos oceans, respectively, occurred in the investigated area from Late Jurassic to Tertiary. We relate the genesis of Jurassic granitoids to the first subduction event, whereas Tertiary granitoids are associated with the second subduction. Fluids released by the two subducted slabs induced metasomatic processes generating a ,leopard skin' mantle wedge able to produce mafic melts ranging from typical calc-alkaline to ultra-potassic. Such melts interacted in various amounts with crustal calc-alkaline anatectic melts to generate the wide spectrum of Tertiary granitoids occurring in the study area. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Mesozoic,Paleogene sedimentary facies and paleogeography of Tibet, western China: tectonic implications

    GEOLOGICAL JOURNAL, Issue 3 2002
    Kai-Jun Zhang
    Abstract In Early,Middle Triassic time, an abyssal sea covered most of the Songpan,Ganzi area, whereas a Central Tibetan Landmass, up to 400,km wide, may have stretched across the Lhasa and Western Qiangtang terrains. In Late Triassic time, the Songpan,Ganzi sea closed, the Central Tibetan Landmass receded westwards away from southern Western Qiangtang, a littoral environment dominated Eastern Qiangtang, middle Western Qiangtang, and southeastern Lhasa, a shelf environment existed only in northern and southeastern Western Qiangtang and northwestern Eastern Qiangtang, and abyssal flysch was spread along the eastern Bangonghu,Nüjiang zone. In Early,Middle Jurassic time, Songpan,Ganzi had become part of the Eurasian continent, abyssal flysch sediments stretched throughout the Bangonghu,Nüjiang zone, the Central Tibetan Landmass was only locally present in southwestern Lhasa, and the Tethyan epicontinental sea nearly covered all Tibet southwest of the Jinsajiang suture. In Late Jurassic time, oceanic flysch deposition existed only along the westernmost Bangonghu,Nüjiang zone, nearly all of Tibet was covered by coastal deposits, and shelf deposits existed only in northern Western Qiangtang and westernmost Lhasa. In the early stage of Early Cretaceous time, the majority of Qiangtang had become dry land, and a supralittoral environment dominated across the entire Lhasa terrain. However, during the late stage of the Early Cretaceous time, platform,shelf carbonates prevailed on southern Western Qiangtang and northern Lhasa. In Late Cretaceous time, the majority of Qiangtang had become emergent land, and a supratidal environment dominated Lhasa, the western rim of Western Qiangtang, and Tarim. In Paleogene time, the majority of Tibet became emergent land, and a supratidal environment existed only on the southern and western rims. The dominance of Upper Triassic,Jurassic shelf carbonates on the northwestern Eastern Qiangtang corner and the northern Western Qiangtang rim suggests a diachronous closing of the Jinsajiang paleo-Tethys ocean, first during latest Triassic time when the Eastern Qiangtang terrain collided with Asia and finally in Jurassic time when the Western Qiangtang terrain was amalgamated to Asia. Rich picotites in Upper Triassic sandstones of middle Qiangtang suggest that the Shuanghu suture could have extended along the middle of Qiangtang, and stable shelf sedimentation during Late Triassic,Middle Jurassic time in the Western Qiangtang terrain shows that the suture probably could not have formed until Middle Jurassic time. The opening time of the Bangonghu,Nüjiang mid-Tethys ocean could be Late Triassic time due to the existence of the Central Tibetan Landmass across Western Qiangtang and Lhasa during Early,Middle Triassic time. However, its opening was diachronous, at Late Triassic time in the east and at Early,Middle Jurassic time in the west. Furthermore, its closing was also diachronous, first in the east at the beginning of Late Jurassic time and later in the west in latest Jurassic to earliest Cretaceous time. Widespread upper Lower Cretaceous limestone up to 5,km thick over the northern half of Lhasa indicates that southern Tibet could have undergone an extensive backarc subsidence during late Early Cretaceous time. Continuous shallow marine sedimentation through the entire Cretaceous time over much of southern Tibet indicates that southern Tibet was intensely elevated only after the end of Paleogene time, its high topography being the product of the Indo-Asian collision. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Fabrics, facies control and diagenesis of lacustrine ooids and associated grains from the Upper Triassic, southwest England

    GEOLOGICAL JOURNAL, Issue 1 2002
    P. G. Milroy
    Abstract Petrographic analysis of ooids from the Upper Triassic (Mercia Mudstone Group) of southwest England provides an opportunity to assess in detail the origins, transport pathways and diagenesis of an ancient oolite. The Clevedon Oolite is dolomitized and contains a variety of dissolved ooids (oomoulds) and associated grains. The oomoulds occur in well-sorted, planar and cross-stratified grainstones, packstones, sandstones and conglomerates associated with shoreface, intershoal, foreshore, beachrock and littoral strandplain deposits. The ooids grew in suspension in the shoreface zone and developed a radial aragonite microstructure. The ooids grew to 0.80 mm in diameter, after which they fractured or ceased growing. Broken grains deposited on or near mobile shoals were rapidly recoated, while other grains, deposited in less agitated, intershoal and lower foreshore areas, were micritized or microbially bound into grapestone aggregates. Locally peloids, intraclasts, quartz grains and micritized grains from intershoal areas supplied nuclei for ooids on nearby shoals. Grains deposited in foreshore areas were rapidly cemented into beachrock and reworked into conglomerates. Soon after deposition, the ooids were subjected to widespread aragonite dissolution followed by dolomitization. The lack of pre-dolomitization calcite, together with the abundance of early (pre-compaction) dolospar cements and fabric-selective dolomitization of micritic fabrics, suggest aragonite dissolution by dolomitizing fluids. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Tectono-sedimentary evolution of the northernmost margin of the NE German Basin between uppermost Carboniferous and Late Permian (Rotliegend)

    GEOLOGICAL JOURNAL, Issue 1 2001
    H. Rieke
    Abstract The tectono-sedimentary evolution of the Rotliegend deposits of the northernmost margin of NE German Basin (NEGB) has been analysed on the basis of detailed sedimentary logs of 300,m of core material together with the re-evaluation of 600,km of seismic lines. Three distinct phases were recognized. During the initial Phase I, basin geometry was largely controlled by normal faulting related to deep-seated ductile shearing leading to a strong asymmetric shape, with a steep fault-controlled eastern margin and a gently, dipping western margin. The results of forward modelling along a cross-section fit the basin geometry in width and depth and reveal a footwall uplift of c. 1000,m. Adjacent to the steep faults, local sedimentation of Lithofacies Type I was confined to non-cohesive debris flow-dominated alluvial fans, whereas the gently dipping western margin was dominated by alluvial-cone sedimentation. During the post-extensional period (Phase II), cooling of the lithosphere generated additional accommodation space. The sediments of Lithofacies Type II, comprising mainly clast-supported conglomerates, are interpreted as braided ephemeral stream flow-surge deposits. Tectonic quiescence and an increase in flood events resulting from wetter climate led to progradation of this facies over the entire region. At the end of this period, the accommodation space was almost completely filled resulting in a level topography. Phase III was controlled by the thermal-induced subsidence of the southerly located NEGB in post-Illawarra times. The formerly isolated region tilted towards the SW, thus forming the northern margin of the NEGB during uppermost Havel and Elbe Subgroup times. The sediments of Lithofacies Type III were divided into a marginal sandstone-dominated environment and a finer-grained facies towards the SW. The former consists of poorly-sorted coarse-grained sandstones of a proximal and medial ephemeral stream floodplain facies. The latter comprise mud flat fines and fine-grained distal ephemeral stream deposits. The end of the tectono-sedimentary evolution is marked by the basinwide Zechstein transgression. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Polyphase evolution and reaction sequence of compositional domains in metabasalt: a model based on local chemical equilibrium and metamorphic differentiation

    GEOLOGICAL JOURNAL, Issue 3-4 2000
    T. M. Toóth
    Abstract Eclogitic garnet amphibolite samples from the Southern Steep Belt of the Central Alps show evidence of several stages of metamorphic evolution and exhumation. A method for unravelling this evolution is presented and applied to these samples. It involves a combination of detailed petrographic analysis and microchemical characterization with quantitative models of the thermodynamically stable phase relations for specific compositional domains of each sample. Preserved mineral relics and textural evidence are compared to model predictions to identify the important irreversible reactions. The interpretation of the exhumation history is thus based on the consistency of a wide spectrum of observations with predicted phase diagrams, leading to robust reconstruction of a pressure,temperature (P,T) path even where the mineralogical relics in samples are insufficient, due to retrogression, to warrant application of multi-equilibrium thermobarometric techniques. The formation of compositionally different domains in the metabasalt samples studied is attributed to prograde growth of porphyroblasts (e.g. garnet, plagioclase, zoisite) in the matrix, implying substantial metamorphic differentiation at the scale of a few millimetres. Chemical interaction among different domains during the subsequent P,T evolution is shown to have been very limited. This led to different reaction sequences during exhumation, in which relics preserved in different domains reflect a range of continually changing P,T conditions. For samples from a single outcrop, we deduce a Barrovian prograde path to eclogite facies (23,±,3,kbar, 750,±,50°C), followed by (rapid) decompression to 8,±,1,kbar and 675,±,25°C, and a final heating phase at similar pressures reaching 750,±,40°C. This evolution is attributed to the Alpine cycle involving subduction,collision and slab breakoff,extrusion of tectonic fragments that make up the Southern Steep Belt of the Central Alps. Copyright © 2000 John Wiley & Sons, Ltd. [source]


    ZFHX1B mutations in patients with Mowat-Wilson syndrome,

    HUMAN MUTATION, Issue 4 2007
    Florence Dastot-Le Moal
    Abstract Mowat-Wilson syndrome (MWS) is a recently delineated mental retardation (MR)-multiple congenital anomaly syndrome, characterized by typical facies, severe MR, epilepsy, and variable congenital malformations, including Hirschsprung disease (HSCR), genital anomalies, congenital heart disease (CHD), and agenesis of the corpus callosum (ACC). It is caused by de novo heterozygous mutations or deletions of the ZFHX1B gene located at 2q22. ZFHX1B encodes Smad-interacting protein-1 (SMADIP1 or SIP1), a transcriptional corepressor involved in the transforming growth factor-, signaling pathway. It is a highly evolutionarily conserved gene, widely expressed in embryological development. Over 100 mutations have been described in patients with clinically typical MWS, who almost always have whole gene deletions or truncating mutations (nonsense or frameshift) of ZFHX1B, suggesting that haploinsufficiency is the basis of MWS pathology. No obvious genotype,phenotype correlation could be identified so far, but atypical phenotypes have been reported with missense or splice mutations in the ZFHX1B gene. In this work we describe 40 novel mutations and we summarize the various mutational reports published since the identification of the causative gene. Hum Mutat 28(4), 313,321, 2007. © 2007 Wiley-Liss, Inc. [source]


    Chronic lymphocytic leukemia presenting as cutaneous and bone involvement

    INTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 1 2001
    Maria P. Stefanidou MD
    An 84-year-old man had a 3-year history of a progressive, painless, papulonodular eruption, that was particularly prominent on the face and extremities. Physical examination revealed firm, bluish-red nodules and plaques, located on the tip of the nose, the cheeks, ears, and distal digits. Skin lesions produced a leonine facies (Fig. 1), deformities of the fingers and toes, finger clubbing, and onyxis. An identical lesion was seen on a postoperational scar on the left cheek. The mucous membranes were spared. The patient had anterior and posterior cervical and bilateral axillary lymphadenopathy and splenomegaly. Figure 1. Leonine facies On admission, the peripheral blood count revealed 260,000/mm3 leukocytes (lymphocytes 97%, neutrophils 2%, and monocytes 1%), a hemoglobin level of 9.5 g/dL, and platelet count of 100,000/mm3. Hypogammaglobulinemia with reduction of immunoglobulin G (IgG) and IgM was found. Radiography of the fingers showed multiple osteolytic lesions of the phalanges and phalangette destruction of the left median finger (Fig. 2a,b). Computed tomography of the chest and abdomen revealed bilateral axillary, mediastinal, and para-aortic lymphadenopathy and spleen enlargement. Figure 2. X-Ray of the hands: (a) ,multiple osteolytic lesions of the phalanges and (b) ,partial destruction of the left median phalangette Skin biopsy specimens from the ear and finger lesions showed a massive nonepidermal leukemic infiltration in the papillary and reticular dermis, with a grenz zone consisting of small lymphocytes (Fig. 3). Figure 3. Skin biopsy (hematoxylin and eosin, ×,250). Massive leukemic infiltration consisting of small lymphocytes. Subepidermally, a grenz zone of connective tissue is noted Biopsy of the enlarged cervical lymph node showed a diffuse infiltration with lymphocytes. Tissue biopsy from a finger lytic lesion revealed infiltration of bone trabecular and fibrous tissue with a dense population of small- and medium-sized lymphocytes. Immunohistochemical study of cutaneous and bone lesions showed that the infiltrate in both biopsies consisted mainly of B lymphocytes (CD20+, CD45R+, CD45Ro,, OPD4,). Peripheral blood smear had a B-cell phenotype (CD19 98%, CD20 97%, CD23 99%, CD25 40%, CD5 90%, HLA-DR 100%). Bone marrow smear and immunophenotyping surface marker analysis found a diffuse pattern of B-lymphocytic infiltration. A diagnosis of B-cell chronic lymphocytic leukemia stage C (Binet staging system), with specific cutaneous and bone lesions, was established. The patient received chemotherapy with chlorambucil and methylprednisolone, which resulted in improvement of the hematologic profile. Two years later, the cutaneous lesions showed partial remission. [source]


    Seven Decades of Change in the Zooplankton (s.l.) of the Nile Delta Lakes (Egypt), with Particular Reference to Lake Borullus

    INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 1 2008
    Henri J. Dumont
    Abstract Around the 1930s, the zooplankton (and benthos) of the Nile delta lakes, and Lake Borullus in particular, had a mixed, eutrophic facies, with marine and mesohaline elements dominant for about eight months per year, and freshwater species taking over during the four months of the Nile flood. After the Aswan dam became operational, this regime changed: a steady supply of agricultural drainage water of Nilotic origin consistently freshened the delta. Thus, except in the immediate vicinity of their outlet to the sea, the lakes became almost fresh. Only during the rare and short-lived (one-three weeks) occasions when Aswan closes in winter, marine water is sucked in, and along with it, a saline fauna temporarily becomes re-established in the east and centre of lake Borullus, and presumably of the other delta lakes as well. This marine fauna remained the same over 70+ years of observations. The freshwater component, in contrast, partly nilotic, partly mediterranean, changed deeply over time. First, the fraction of species from temporary waters disappeared, as well as (among copepods and cladocerans) all large-bodied species. Several cladocerans and copepods with a euro-mediterranean range appeared and diluted the pre-existing Afrotropical fauna. The abundance of small cladocerans and, especially, rotifers increased by a factor ten or more. This latter change is believed to reflect two pressures. In a first phase, a re-arrangement of the lake's fish fauna (a top down force) occurred. Freshwater fish replaced marine diadromic species, and their predation pressure on the zooplankton preferentially removed large-bodied prey. In a second phase, increased agricultural drainage caused eutrophication (a bottom-up force) and larger filtrators (cladocerans, some copepods) began to be replaced by small filtrators (rotifers). (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Anisotropy of magnetic susceptibility and petrofabric studies in the Garhwal synform, Outer Lesser Himalaya: Evidence of pop-up klippen

    ISLAND ARC, Issue 3 2009
    Upasana Devrani
    Abstract Geological field, petrographic, and anisotropy of magnetic susceptibility studies help in understanding the evolutionary history of the Garhwal synform that lies in the western Outer Lesser Himalaya. Orientations of the magnetic susceptibility axes reveal large variations at short distances as a result of superimposed deformation, and predominant stress conditions favorable for normal faulting. Rocks forming the outer limbs of the Garhwal Synform are metamorphosed up to the lower greenschist facies. The metamorphic grade increases to chlorite zone in the inner limb and the core is characterized by chlorite,biotite to garnet zones. The different grades of metamorphism are separated by thrusts and the structure is described as a pop-up klippen. [source]


    Subdivision of the Sanbagawa pumpellyite,actinolite facies region in central Shikoku, southwest Japan

    ISLAND ARC, Issue 3 2008
    Masumi Sakaguchi
    Abstract The mineral assemblages of the pumpellyite,actinolite facies such as pumpellyite + actinolite + epidote + chlorite or actinolite + epidote + hematite + chlorite occur in the Sanbagawa low-grade metamorphic region, central Shikoku, southwest Japan. Chemical compositions of these minerals from the eight newly studied areas were analyzed in order to evaluate the areal extent and thermal structure of the region. In the buffered assemblage of pumpellyite + actinolite + epidote + chlorite, the Fe3+/(Fe3+ + Al) values of epidote decrease slightly with decreasing Fe2+/(Fe2+ + Mg) values for chlorite. The changes in these values show a general correlation with temperature. The presence of this relationship implies that the Fe3+/(Fe3+ + Al) values of epidote can be used to divide the Sanbagawa low-grade metamorphic region into low-, medium- and high-grade subzones. The areal distribution of these subzones indicates that: (i) the temperature seems to decrease in the same sense as envisaged by the zonal mapping of the higher-grade pelitic schists; and (ii) there is no significant gap of metamorphic conditions through the boundary between the two structural units (Besshi and Oboke units). It follows that the Sanbagawa low-grade metamorphic region decreases in temperature going up the structural section, and tectonic discontinuities have not affected the thermal structure. [source]


    Organic facies and geochemical aspects in Neogene neritic sediments of the Takafu syncline area of central Japan: Paleoenvironmental and sedimentological reconstructions

    ISLAND ARC, Issue 4 2006
    Ken Sawada
    Abstract Organic petrological observations of kerogen macerals and organic geochemical analyses of carbon isotopes of kerogen macerals and biomarkers were conducted on Neogene neritic sediments of the Takafu syncline area of central Japan. The Senmi, Sakainomiya and Lower Shigarami Formations in that area were deposited at the neritic provinces on the southern edge of the paleo-Japan Sea during the Late Miocene to Early Pliocene. Sedimentary organic matter in these formations was almost terrigenous in origin. Changes in kerogen maceral compositions reflect sedimentological and tectonic histories evaluated in previous studies from sedimentary facies and paleontology. It was found that carbon isotope ratios (,13C) of kerogen macerals increased from ,28, to ,25, from the Sakainomiya to the lower part of the Lower Shigarami Formations. The cause of that increase was presumably the expansion of C4 plants into southwest Japan. The timing was concordant with that of the expansion of C4 plant grasslands in East Asia. The oxicity (oxic to anoxic) conditions of sea bottoms evaluated from pristane/phytane ratios varied. Particularly, in the lower part of the Senmi Formation, layers in which no steroid biomarkers could be detected were found, and had presumably formed under oxic conditions when strong biodegradation had occurred. Concentrations of regular (C27,C29) steranes and dinosteranes were higher in the Sakainomiya and Lower Shigarami Formations. This indicates that dinoflagellates-dominant primary productions were higher at those stages. In addition, concentrations of diatomaceous biomarkers such as C26 norsterane increased from the Lower Shigarami Formation, thus adding diatoms to the major producers. Furthermore, similar associations between the increases of ,13C values of kerogen macerals and concentrations of diatomaceous biomarkers were observed in the Takafu syncline area. Thus, the expansion of C4 plants was possibly associated with the high production of diatom in the shallow-marine areas of the paleo-Japan Sea during the Neogene Period. [source]