Home About us Contact | |||
Facial Clefts (facial + cleft)
Selected AbstractsMagnetic Resonance Microscopy Defines Ethanol-Induced Brain Abnormalities in Prenatal Mice: Effects of Acute Insult on Gestational Day 7ALCOHOLISM, Issue 1 2010Elizabeth A. Godin Background:, This magnetic resonance microscopy (MRM)-based report is the second in a series designed to illustrate the spectrum of craniofacial and central nervous system (CNS) dysmorphia resulting from single- and multiple-day maternal ethanol treatment. The study described in this report examined the consequences of ethanol exposure on gestational day (GD) 7 in mice, a time in development when gastrulation and neural plate development begins; corresponding to the mid- to late third week postfertilization in humans. Acute GD 7 ethanol exposure in mice has previously been shown to result in CNS defects consistent with holoprosencephaly (HPE) and craniofacial anomalies typical of those in Fetal Alcohol Syndrome (FAS). MRM has facilitated further definition of the range of GD 7 ethanol-induced defects. Methods:, C57Bl/6J female mice were intraperitoneally (i.p.) administered vehicle or 2 injections of 2.9 g/kg ethanol on day 7 of pregnancy. Stage-matched control and ethanol-exposed GD 17 fetuses selected for imaging were immersion fixed in a Bouins/Prohance solution. MRM was conducted at either 7.0 Tesla (T) or 9.4 T. Resulting 29 ,m isotropic spatial resolution scans were segmented and reconstructed to provide 3D images. Linear and volumetric brain measures, as well as morphological features, were compared for control and ethanol-exposed fetuses. Following MRM, selected specimens were processed for routine histology and light microscopic examination. Results:, Gestational day 7 ethanol exposure resulted in a spectrum of median facial and forebrain deficiencies, as expected. This range of abnormalities falls within the HPE spectrum; a spectrum for which facial dysmorphology is consistent with and typically is predictive of that of the forebrain. In addition, other defects including median facial cleft, cleft palate, micrognathia, pituitary agenesis, and third ventricular dilatation were identified. MRM analyses also revealed cerebral cortical dysplasia/heterotopias resulting from this acute, early insult and facilitated a subsequent focused histological investigation of these defects. Conclusions:, Individual MRM scans and 3D reconstructions of fetal mouse brains have facilitated demonstration of a broad range of GD 7 ethanol-induced morphological abnormality. These results, including the discovery of cerebral cortical heterotopias, elucidate the teratogenic potential of ethanol insult during the third week of human prenatal development. [source] Genes causing clefting syndromes as candidates for non-syndromic cleft lip with or without cleft palate: a family-based association studyEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 6 2008Luca Scapoli Clefts of the orofacial region are among the most common congenital defects, caused by abnormal facial development during gestation. Non-syndromic cleft lip with or without cleft palate (NSCLP) is a complex trait most probably caused by multiple interacting loci, with possible additional environmental factors. As facial clefts form part of more than 300 syndromes, one strategy for identifying the genetic causes of NSCLP could be to study candidate genes responsible for clefting syndromes. Three genes were selected for this investigation: TP63, which codes for the tumour protein p63 and causes Ectrodactyly-Ectodermal dysplasia-orofacial Cleft syndrome; JAG2, a downstream gene of TP63; and MID1, which is responsible for Opitz syndrome. A linkage disequilibrium investigation was performed with intragenic single nucleotide polymorphisms on each of these genes in a sample study of 239 patients/parents trios. Evidence which suggests that JAG2 and MID1 may play a role in NSCLP was obtained. [source] Genetic variants in IRF6 and the risk of facial clefts: single-marker and haplotype-based analyses in a population-based case-control study of facial clefts in NorwayGENETIC EPIDEMIOLOGY, Issue 5 2008Astanand Jugessur Abstract Mutations in the gene encoding interferon regulatory factor 6 (IRF6) underlie a common form of syndromic clefting known as Van der Woude syndrome. Lip pits and missing teeth are the only additional features distinguishing the syndrome from isolated clefts. Van der Woude syndrome, therefore, provides an excellent model for studying the isolated forms of clefting. From a population-based case-control study of facial clefts in Norway (1996,2001), we selected 377 cleft lip with or without cleft palate (CL/P), 196 cleft palate only (CPO), and 763 control infant-parent triads for analysis. We genotyped six single nucleotide polymorphisms within the IRF6 locus and estimated the relative risks (RR) conferred on the child by alleles and haplotypes of the child and of the mother. On the whole, there were strong statistical associations with CL/P but not CPO in our data. In single-marker analyses, mothers with a double-dose of the ,a'-allele at rs4844880 had an increased risk of having a child with CL/P (RR=1.85, 95% confidence interval: 1.04,3.25; P=0.036). An RR of 0.38 (95% confidence interval: 0.16,0.92; P=0.031) was obtained when the child carried a single-dose of the ,a'-allele at rs2235371 (the p.V274I polymorphism). The P -value for the overall test was <0.001. In haplotype analyses, several of the fetal and maternal haplotype relative risks were statistically significant individually but were not strong enough to show up on the overall test (P=0.113). Taken together, these findings further support a role for IRF6 variants in clefting of the lip and provide specific risk estimates in a Norwegian population. Genet. Epidemiol. 2008. © 2008 Wiley-Liss, Inc. [source] Different Gene Expressions on the Left and the Right: A Genotype/Phenotype Mismatch in Need of AttentionANNALS OF HUMAN GENETICS, Issue 1 2008Ursula Mittwoch Summary Discordance in monozygotic twins has traditionally been explained in terms of environmental influences. A recent investigation has found a difference in epigenetic markers in older but not in younger twins. However, phenotypic differences that depend on an individual's postnatal life style do not address the problem of discordance in congenital malformations, or the reason why malformations are frequently unilateral, often with a preference for one or the other side. One such condition, cleft lip with or without cleft palate, which is preferentially expressed on the left, is a multifactorial condition, that is caused by a failure of the critical timing necessary for different groups of cells to meet and develop into a normal face. This process is dependent on cell proliferation and migration, which are energy-dependent, while the additional requirement for apoptosis to allow cell fusion suggests the involvement of mitochondria. Recent progress in two separate areas of research could lead to a better understanding of the problem of facial clefts: (1) the recognition of an interaction between gene products and mitochondria in the aetiology of neurodegenerative diseases and (2) the discovery of an increasing number of genes, including transcription factors, growth factors and members of the TGF-, signalling family, that are differentially expressed on the left and right side, thus pointing to a difference in their micro-environment. These findings emphasize the importance of investigating the activity of candidate genes for complex developmental processes separately on the left and right sides. Data presented in this review suggest that differential growth rates may lead to an inversion of laterality. A method is described to test for a possible mitochondrial difference between left and right sides, using a mouse model with cleft lip. [source] |