FACE Experiment (face + experiment)

Distribution by Scientific Domains


Selected Abstracts


Rainfall distribution is the main driver of runoff under future CO2 -concentration in a temperate deciduous forest

GLOBAL CHANGE BIOLOGY, Issue 1 2010
SEBASTIAN LEUZINGER
Abstract Reduced stomatal conductance under elevated CO2 results in increased soil moisture, provided all other factors remain constant. Whether this results in increased runoff critically depends on the interaction of rainfall patterns, soil water storage capacity and plant responses. To test the sensitivity of runoff to these parameters under elevated CO2, we combine transpiration and soil moisture data from the Swiss Canopy Crane FACE experiment (SCC, 14 30,35 m tall deciduous broad-leaved trees under elevated CO2) with 104 years of daily precipitation data from an adjacent weather station to drive a three-layer bucket model (mean yearly precipitation 794 mm). The model adequately predicts the water budget of a temperate deciduous forest and runoff from a nearby gauging station. A simulation run over all 104 years based on measured sap flow responses resulted in only 5.5 mm (2.9%) increased ecosystem runoff under elevated CO2. Out of the 37 986 days (1 January 1901,31 December 2004), only 576 days produce higher runoff in the elevated CO2 scenario. Only 1 out of 17 years produces a CO2 -signal >20 mm a,1, which mostly depends on a few single days when runoff under elevated CO2 exceeds runoff under ambient conditions. The maximum signal for a double preindustrial CO2 -concentration under the past century daily rainfall regime is an additional runoff of 46 mm. More than half of all years produce a signal of <5 mm a,1, because trees consume the ,extra' moisture during prolonged dry weather. Increased runoff under elevated CO2 is nine times more sensitive to variations in rain pattern than to the applied reduction in transpiration under elevated CO2. Thus the key driver of increased runoff under future CO2 -concentration is the day by day rainfall pattern. We argue that increased runoff due to a first-order plant physiological CO2 -effect will be very small (<3%) in a landscape dominated by temperate deciduous forests, and will hardly increase flooding risk in forest catchments. Monthly rainfall sums are unsuitable to realistically model such CO2 effects. These findings may apply to other ecosystems with comparable soil water storage capacity. [source]


Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO2: a microcosm study

GLOBAL CHANGE BIOLOGY, Issue 2 2009
LINGLI LIU
Abstract Elevated CO2 has been shown to stimulate plant productivity and change litter chemistry. These changes in substrate availability may then alter soil microbial processes and possibly lead to feedback effects on N availability. However, the strength of this feedback, and even its direction, remains unknown. Further, uncertainty remains whether sustained increases in net primary productivity will lead to increased long-term C storage in soil. To examine how changes in litter chemistry and productivity under elevated CO2 influence microbial activity and soil C formation, we conducted a 230-day microcosm incubation with five levels of litter addition rate that represented 0, 0.5, 1.0, 1.4 and 1.8 × litterfall rates observed in the field for aspen stand growing under control treatments at the Aspen FACE experiment in Rhinelander, WI, USA. Litter and soil samples were collected from the corresponding field control and elevated CO2 treatment after trees were exposed to elevated CO2 (560 ppm) for 7 years. We found that small decreases in litter [N] under elevated CO2 had minor effects on microbial biomass carbon, microbial biomass nitrogen and dissolved inorganic nitrogen. Increasing litter addition rates resulted in linear increase in total C and new C (C from added litter) that accumulated in whole soil as well as in the high density soil fraction (HDF), despite higher cumulative C loss by respiration. Total N retained in whole soil and in HDF also increased with litter addition rate as did accumulation of new C per unit of accumulated N. Based on our microcosm comparisons and regression models, we expected that enhanced C inputs rather than changes in litter chemistry would be the dominant factor controlling soil C levels and turnover at the current level of litter production rate (230 g C m,2 yr,1 under ambient CO2). However, our analysis also suggests that the effects of changes in biochemistry caused by elevated CO2 could become significant at a higher level of litter production rate, with a trend of decreasing total C in HDF, new C in whole soil, as well as total N in whole soil and HDF. [source]


Next generation of elevated [CO2] experiments with crops: a critical investment for feeding the future world

PLANT CELL & ENVIRONMENT, Issue 9 2008
ELIZABETH A. AINSWORTH
ABSTRACT A rising global population and demand for protein-rich diets are increasing pressure to maximize agricultural productivity. Rising atmospheric [CO2] is altering global temperature and precipitation patterns, which challenges agricultural productivity. While rising [CO2] provides a unique opportunity to increase the productivity of C3 crops, average yield stimulation observed to date is well below potential gains. Thus, there is room for improving productivity. However, only a fraction of available germplasm of crops has been tested for CO2 responsiveness. Yield is a complex phenotypic trait determined by the interactions of a genotype with the environment. Selection of promising genotypes and characterization of response mechanisms will only be effective if crop improvement and systems biology approaches are closely linked to production environments, that is, on the farm within major growing regions. Free air CO2 enrichment (FACE) experiments can provide the platform upon which to conduct genetic screening and elucidate the inheritance and mechanisms that underlie genotypic differences in productivity under elevated [CO2]. We propose a new generation of large-scale, low-cost per unit area FACE experiments to identify the most CO2 -responsive genotypes and provide starting lines for future breeding programmes. This is necessary if we are to realize the potential for yield gains in the future. [source]


The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions

PLANT CELL & ENVIRONMENT, Issue 3 2007
ELIZABETH A. AINSWORTH
ABSTRACT This review summarizes current understanding of the mechanisms that underlie the response of photosynthesis and stomatal conductance to elevated carbon dioxide concentration ([CO2]), and examines how downstream processes and environmental constraints modulate these two fundamental responses. The results from free-air CO2 enrichment (FACE) experiments were summarized via meta-analysis to quantify the mean responses of stomatal and photosynthetic parameters to elevated [CO2]. Elevation of [CO2] in FACE experiments reduced stomatal conductance by 22%, yet, this reduction was not associated with a similar change in stomatal density. Elevated [CO2] stimulated light-saturated photosynthesis (Asat) in C3 plants grown in FACE by an average of 31%. However, the magnitude of the increase in Asat varied with functional group and environment. Functional groups with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-limited photosynthesis at elevated [CO2] had greater potential for increases in Asat than those where photosynthesis became ribulose-1,5-bisphosphate (RubP)-limited at elevated [CO2]. Both nitrogen supply and sink capacity modulated the response of photosynthesis to elevated [CO2] through their impact on the acclimation of carboxylation capacity. Increased understanding of the molecular and biochemical mechanisms by which plants respond to elevated [CO2], and the feedback of environmental factors upon them, will improve our ability to predict ecosystem responses to rising [CO2] and increase our potential to adapt crops and managed ecosystems to future atmospheric [CO2]. [source]