Home About us Contact | |||
Fault Zone (fault + zone)
Kinds of Fault Zone Selected AbstractsDiscontinuity in fish assemblages across an elevation gradient in a southern Appalachian watershed, USAECOLOGY OF FRESHWATER FISH, Issue 1 2005J. L. Robinson This region is noted for extreme topographical relief, high cumulative annual rainfall and many rare and endemic plants and animals. The study area encompasses a portion of the Blue Ridge Escarpment and the associated Brevard Fault Zone. We hypothesise that major waterfalls and cascade complexes have acted to limit invasion and colonisation by fishes from downstream. This hypothesis is supported by longitudinal fish assemblage patterns in our study streams. Fish species richness in Toxaway River increased from 4 to 23 between Lake Toxaway and Lake Jocassee, a distance of 10 river km. We found similar discontinuities in neighbouring Horsepasture River and Bearwallow Creek. We found no instances of species replacement along this elevation gradient, and the trend in increased diversity downstream showed discontinuities coincident with sharp elevation breaks. With regard to theories posited to explain community formation in headwater stream fish communities (especially in those characterised by high topographical relief), we suggest coloniser ,access' may be more important than other factors including competitive interactions. Resumen 1. En este estudio examinamos patrones en los ensamblajes de peces de los ríos Toxaway y Horsepasture, dos ríos de elevada altitud de Carolina del Norte (USA). Esta región se caracteriza por rupturas topografías extremas, gran cantidad de lluvia anual y numerosos endemismos animales y vegetales. El estudio incluye una porción de la región del Blue Ridge Escarpment y la zona asociada de Brevard Fault. 2. Nuestra hipótesis es que los complejos sistemas de cataratas han limitado la invasión y la colonización de los peces desde las localidades aguas abajo. Los patrones longitudinales de los ensamblajes de peces fueron consistentes con esta hipótesis. La riqueza de las especies de peces en el río Toxaway incrementó desde 4 a 23 especies en una distancia de 10 Km de río, entre los lagos Taxoway y Jocasee. Encontramos discontinuidades similares en los vecinos ríos Horsepasture y Bearwallow. No encontramos ningún caso de re-emplazamiento de especies a lo largo del gradiente de altitud y la tendencia a incrementar la diversidad aguas abajo mostró discontinuidades que coincidieron con rupturas de altitudes. 3. Al considerar teorías que explican la formación de comunidades en zonas altas de ríos (especialmente en regiones caracterizadas por rupturas topografías), sugerimos que el acceso para los colonizadores puede ser más importante que otros factores incluyendo interacciones competitivas. [source] Deformation history of the eclogite- and jadeitite-bearing mélange from North Motagua Fault Zone, Guatemala: insights in the processes of a fossil subduction channelGEOLOGICAL JOURNAL, Issue 2 2009Michele Marroni Abstract In Guatemala, along the northern side of the Motagua Valley, a mélange consisting of blocks of eclogite and jadeitite set in a metaserpentinitic and metasedimentary matrix crops out. The metasedimentary rocks display a complex deformation history that includes four tectonic phases, from D1 to D4. The D1 phase occurs only as a relic and is characterized by a mineral assemblage developed under pressure temperature (P,T) conditions of 1.00,1.25,GPa and 206,263°C. The D2 phase, characterized by isoclinal folds, schistosity and mineral/stretching lineation, developed at P,T conditions of 0.70,1.20,GPa and 279,409°C. The following D3 and D4 phases show deformations developed at shallower structural levels. Whereas the D1 phase can be interpreted as the result of underplating of slices of oceanic lithosphere during an intraoceanic subduction, the following phases have been acquired by the mélange during its progressive exhumation through different mechanisms. The deformations related to the D2 and D3 phases can be regarded as acquired by extrusion of the mélange within a subduction channel during a stage of oblique subduction. In addition, the structural evidences indicate that the coupling and mixing of different blocks occurred during the D2 phase, as a result of flow reverse and upward trajectory in the subduction channel. By contrast, the D4 phase can be interpreted as related to extension at shallow structural levels. In this framework, the exhumation-related structures in the mélange indicate that this process, probably long-lived, developed through different mechanisms, active in the subduction channel through time. Copyright © 2009 John Wiley & Sons, Ltd. [source] Major neotectonic features of eastern Marmara region, Turkey: development of the Adapazar,,Karasu corridor and its tectonic significanceGEOLOGICAL JOURNAL, Issue 2 2004nç Yi Abstract Eastern Marmara region consists of three different morphotectonic units: Thrace,Kocaeli Peneplain (TKP) and Çamda,,Akçakoca Highland (ÇAH) in the north, and Armutlu,Almac,k Highland in the south of the North Anatolian Fault Zone (NAFZ). The geologic-morphologic data and seismic profiles from the Sakarya River offshore indicate that the boundary between the TKP in the west and ÇAH in the east is a previously unrecognized major NNE,SSW-trending strike-slip fault zone with reverse component. The fault zone is a distinct morphotectonic corridor herein named the Adapazar,,Karasu corridor (AKC) that runs along the Sakarya River Valley and extends to its submarine canyon along the southern margin of the Black Sea in the north. It formed as a transfer fault zone between the TKP and ÇAH during the Late Miocene; the former has been experiencing extensional forces and the latter compressional forces since then. East,West-trending segments of the NAFZ cuts the NE,SW-trending AKC and their activity has resulted in the formation of a distinct fault-bounded morphology, which is characterized by alternating E,W highlands and lowlands in the AKC. Furthermore, this activity has resulted in the downward motion of an ancient delta and submarine canyon of the Sakarya River in the northern block of the NAFZ below sea level so that the waters of the Black Sea invaded them. The NE,SW-trending faults in the AKC were reactivated with the development of the NAFZ in the Late Pliocene, which then caused block motions and microseismic activities throughout the AKC. Copyright © 2004 John Wiley & Sons, Ltd. [source] Insights into biaxial extensional tectonics: an examplefrom the Sand,kl, Graben, West Anatolia, TurkeyGEOLOGICAL JOURNAL, Issue 1 2003Mustafa Cihan Abstract West Anatolia, together with the Aegean Sea and the easternmost part of Europe, is one of the best examples of continental extensional tectonics. It is a complex area bounded by the Aegean,Cyprus Arc to the south and the North Anatolian Fault Zone (NAFZ) to the north. Within this complex and enigmatic framework, the Sand,kl, Graben (10,km wide, 30,km long) has formed at the eastern continuation of the Western Anatolian extensional province at the north-northwestward edge of the Isparta Angle. Recent studies have suggested that the horst,graben structures in West Anatolia formed in two distinct extensional phases. According to this model the first phase of extension commenced in the Early,Middle Miocene and the last, which is accepted as the onset of neotectonic regime, in Early Pliocene. However, it is controversial whether two-phase extension was separated by a short period of erosion or compression during Late Miocene,Early Pliocene. Both field observations and kinematic analysis imply that the Sand,kl, Graben has existed since the Late Pliocene, with biaxial extension on its margins which does not necessarily indicate rotation of regional stress distribution in time. Although the graben formed later in the neotectonic period, the commencement of extension in the area could be Early Pliocene (c. 5,Ma) following a severe but short time of erosion at the end of Late Miocene. The onset of the extensional regime might be due to the initiation of westward motion of Anatolian Platelet along the NAFZ that could be triggered by the higher rate of subduction at the east Aegean,Cyprus Arc in the south of the Aegean Sea. Copyright © 2003 John Wiley & Sons, Ltd. [source] Regional teleseismic tomography of the western Lachlan Orogen and the Newer Volcanic Province, southeast AustraliaGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2002Frank M. Graeber Summary From 1998 May to September a portable array of 40 short-period digital seismograph stations was operated in western Victoria, southeast Australia, across the western end of the mid-Paleozoic Lachlan Foldbelt and the Newer Volcanic Province. Consisting of four parallel, almost W,E-oriented receiver lines, the array covered an area of about 270 × 150 km2. The major aim of the LF98 (Lachlan Foldbelt survey 1998) project is to map lateral variations in P -wave speeds (Vp) in the crust and upper mantle using teleseismic arrival time tomography, primarily in order to investigate whether the major surface structural zones are associated with seismic velocity signatures at depth. Little a priori information from seismic profiling is available. We invert 4067 relative arrival time residuals for a minimum structure Vp model in the upper few hundred km using non-linear iteration and 3-D ray tracing. The most prominent negative anomaly (,3.8 per cent) in Vp is found at a depth of about 45 km underneath the eastern part of the Newer Volcanic Province. It correlates spatially with the highest density of Pliocene and Pleistocene eruption centres northwest of Melbourne, and is therefore interpreted as a hotspot-related high-temperature anomaly causing reduced mantle velocities. The related coherent volume of significantly lower than average velocities extends down to depths greater than 100 km in the east, and extends west underneath the Newer Volcanic Province. A strong velocity contrast, with average velocities ,2 per cent greater in the west, is found down to about 100 km across the Moyston Fault Zone, which forms the major structural boundary between the early-Paleozoic Delamerian Orogen in the west and the Lachlan Orogen in the east. This result suggests that the Moyston Fault Zone should be seen as a major lithospheric boundary. In the south this boundary is also expressed by a distinct discontinuity in Sr-isotopic ratios of xenoliths (the so-called Mortlake discontinuity) and a change in the geochemistry of plutons of similar age. However, if the east to west velocity contrast originally existed in this southern zone, it is now overprinted by the thermally reduced mantle velocities beneath the Newer Volcanic Province. [source] Role of fluids in the metamorphism of the Alpine Fault Zone, New ZealandJOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2001J. K. Vry Abstract Models of fluid/rock interaction in and adjacent to the Alpine Fault in the Hokitika area, South Island, New Zealand, were investigated using hydrogen and other stable isotope studies, together with field and petrographic observations. All analysed samples from the study area have similar whole-rock ,D values (,DWR = ,56 to ,30,, average = ,45,, n = 20), irrespective of rock type, degree of chloritization, location along the fault, or across-strike distance from the fault in the garnet zone. The green, chlorite-rich fault rocks, which probably formed from Australian Plate precursors, record nearly isothermal fluid/rock interaction with a schist-derived metamorphic fluid at high temperatures near 450,500°C (,D of water in equilibrium with the green fault rocks (,DH2O, green) ,,,18,; ,D of water in equilibrium with the greyschists and greyschist-derived mylonites (,DH2O, grey) , ,19, at 500°C; ,DH2O, green , ,17,; ,DH2O, grey , ,14, at 450°C). There is no indication of an influx of a meteoric or mantle-derived fluid in the Alpine Fault Zone in the study area. The Alpine Fault Zone at the surface shows little evidence of late-stage retrogression or veining, which might be attributed to down-temperature fluid flow. It is probable that prograde metamorphism in the root zone of the Southern Alps releases metamorphic fluids that at some region rise vertically rather than following the trace of the Alpine Fault up to the surface, owing to the combined effects of the fault, the disturbed isotherms under the Southern Alps, and the brittle,ductile transition. Such fluids could mix with meteoric fluids to deposit quartz-rich, possibly gold-bearing veins in the region c. 5,10 km back from the fault trace. These results and interpretations are consistent with interpretations of magnetotelluric data obtained in the South Island GeopHysical Transects (SIGHT) programme. [source] DISTRIBUTION OF SOURCE ROCKS AND MATURITY MODELLING IN THE NORTHERN CENOZOIC SONG HONG BASIN (GULF OF TONKIN), VIETNAMJOURNAL OF PETROLEUM GEOLOGY, Issue 2 2005C. Andersen The northern offshore part of the Cenozoic Song Hong Basin in the Gulf of Tonkin (East Vietnam Sea) is at an early stage of exploration with only a few wells drilled. Oil to source rock correlation indicates that coals are responsible for the sub-commercial oil and gas accumulations in sandstones in two of the four wells which have been drilled on faulted anticlines and flower structures. The wells are located in a narrow, structurally inverted zone with a thick predominantly deltaic Miocene succession between the Song Chay and Vinh Ninh/Song Lo fault zones. These faults are splays belonging to the offshore extension of the Red River Fault Zone. Access to a database of 3,500 km of 2D seismic data has allowed a detailed and consistent break-down of the geological record of the northern part of the basin into chronostratigraphic events which were used as inputs to model the hydrocarbon generation history. In addition, seismic facies mapping, using the internal reflection characteristics of selected seismic sequences, has been applied to predict the lateral distribution of source rock intervals. The results based on Yükler ID basin modelling are presented as profiles and maturity maps. The robustness of the results are analysed by testing different heat flow scenarios and by transfer of the model concept to IES Petromod software to obtain a more acceptable temperature history reconstruction using the Easy%R0 algorithm. Miocene coals in the wells located in the inverted zone between the fault splays are present in separate intervals. Seismic facies analysis suggests that the upper interval is of limited areal extent. The lower interval, of more widespread occurrence, is presently in the oil and condensate generating zones in deep synclines between inversion ridges. The Yükler modelling indicates, however, that the coaly source rock interval entered the main window prior to formation of traps as a result of Late Miocene inversion. Lacustrine mudstones, similar to the highly oil-prone Oligocene mudstones and coals which are exposed in the Dong Ho area at the northern margin of the Song Hong Basin and on Bach Long Vi Island in Gulf of Tonkin, are interpreted to be preserved in a system of undrilled NW,SE Paleogene half-grabens NE of the Song Lo Fault Zone. This is based on the presence of intervals with distinct, continuous, high reflection seismic amplitudes. Considerable overlap exists between the shale-prone seismic facies and the modelled extent of the present-day oil and condensate generating zones, suggesting that active source kitchens also exist in this part of the basin. Recently reported oil in a well located onshore (BIO-STB-IX) at the margin of the basin, which is sourced mainly from "Dong Ho type" lacustrine mudstones supports the presence of an additional Paleogene sourced petroleum system. [source] Carlin-type Gold Prospects in Surigao del Norte, Mindanao Island, Philippines: Their Geology and Mineralization PotentialRESOURCE GEOLOGY, Issue 3 2005Victor B. Maglambayan Abstract. Three calcareous sedimentary rock-hosted Carlin type-like gold prospects were mapped in a mineral production sharing agreement area of Philex Gold Philippines Inc. in Taganaan municipality, Surigao del Norte province in Mindanao island in the Philippines. They occur along a 20,25 km long trend of known epigenetic gold and porphyry copper deposits that lie close to several splays of the Philippine Fault Zone. The gold district forms part of the Late Cretaceous Eastern Mindanao Range that hosts early Paleogene and late Pliocene to Quaternary intrusive rocks. Gold is invisible in the jasperoid outcrops in Lascogon, Napo, and Danao prospects. The jasperoids occur in lenses of marls belonging to the Taganaan Marl Member that is associated to a turbiditic member of the Middle Miocene Mabuhay Formation. The marl lenses include gently dipping interbedded silty limestones and calcareous shales. The "invisible gold" mineralization in silicified calcareous rocks resembles Carlin-type deposits. Based on the mapped igneous and sedimentary rocks, a possible heat source for the gold mineralization is either or both of the two main phases of intrusion, Mabuhay An-desite or Alipao Andesite Porphyry. Forty-eight rock samples, fifteen stream sediment samples, and one soil sample were critical in delineating the general features of the potential Carlin-type prospects. The gold grades of jasperoids in the three prospects range from trace amounts to 20 g/t Au. Regional studies of gold and porphyry copper mineralization in the Surigao del Norte mineral district are important in delineating ore targets for drilling in the three prospects. [source] Petroleum System of the Sufyan Depression at the Eastern Margin of a Huge Strike-slip Fault Zone in Central AfricaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2009ZHANG Yamin Abstract: The present paper mainly studies the petroleum system of the Sufyan Depression in the Muglad Basin of central Africa and analyzes its control of hydrocarbon accumulation. On the basis of comprehensive analysis of effective source rock, reservoir bed types and source,reservoir,seal assemblages, petroleum system theory has been used to classify the petroleum system of the Sufyan Depression. Vertically, the Sufyan Depression consists of two subsystems. One is an Abu Gabra subsystem as a self generating, accumulating and sealing assemblage. The other subsystem is composed of an Abu Gabra source rock, Bentiu channel sandstone reservoir and Darfur group shale seal, which is a prolific assemblage in this area. Laterally, the Sufyan Depression is divided into eastern and western parts with separate hydrocarbon generation centers more than 10 000 m deep. The potential of the petroleum system is tremendous. Recently, there has been a great breakthrough in exploration. The Sufyan C-1 well drilled in the central structural belt obtained high-yielding oil flow exceeding 100 tons per day and controlled geologic reserves of tens of millions of tons. The total resource potential of the Sufyan Depression is considerable. The central structural belt is most favorable as an exploration and development prospect. [source] Preliminary Results of In-situ Stress Measurements along the Longmenshan Fault Zone after the Wenchuan Ms 8.0 EarthquakeACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2009Manlu WU Abstract: Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (,20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake. [source] Two-dimensional inversion of magnetotelluric data with consecutive use of conjugate gradient and least-squares solution with singular value decomposition algorithmsGEOPHYSICAL PROSPECTING, Issue 1 2008M. Emin Candansayar ABSTRACT I investigated the two-dimensional magnetotelluric data inversion algorithms in studying two significant aspects within a linearized inversion approach. The first one is the method of minimization and second one is the type of stabilizing functional used in parametric functionals. The results of two well-known inversion algorithms, namely conjugate gradient and the least-squares solution with singular value decomposition, were compared in terms of accuracy and CPU time. In addition, magnetotelluric data inversion with various stabilizers, such as L2-norm, smoothing, minimum support, minimum gradient support and first-order minimum entropy, were examined. A new inversion algorithm named least-squares solution with singular value decomposition and conjugate gradient is suggested in seeing the outcomes of the comparisons carried out on least-squares solutions with singular value decomposition and conjugate gradient algorithms subject to a variety of stabilizers. Inversion results of synthetic data showed that the newly suggested algorithm yields better results than those of the individual implementations of conjugate gradient and least-squares solution with singular value decomposition algorithms. The suggested algorithm and the above-mentioned algorithms inversion results for the field data collected along a line crossing the North Anatolian Fault zone were also compared each other and results are discussed. [source] In situ hydraulic tests in the active fault survey tunnel, Kamioka Mine, excavated through the active Mozumi-Sukenobu Fault zone and their hydrogeological significanceISLAND ARC, Issue 4 2006Tsuyoshi Nohara Abstract The spatial hydrogeological and structural character of the active Mozumi-Sukenobu Fault (MSF) was investigated along a survey tunnel excavated through the MSF in the Kamioka Mine, central Japan. Major groundwater conduits on both sides of the MSF are recognized. One is considered to be a subvertical conduit between the tunnel and the surface, and the other is estimated to be a major reservoir of old meteoric water alongside the MSF. Our studies indicate that part of the MSF is a sub-vertical continuous barrier that obstructs younger meteoric water observed in the south-eastern part of the Active Fault Survey Tunnel (AFST) and water recharge to the rock mass intersected by the north-western part of the AFST. The MSF might be a continuous barrier resulting in the storage of a large quantity of older groundwater to the northwest. The observations and results of in situ hydraulic tests indicate that the major reservoir is not the fault breccia associated with the northeast,southwest trending faults of the MSF, but the zone in which blocks of fractured rocks occur beside high angle faults corresponding to X shears whose tectonic stress field coincides with the present regional stress field and antithetic Riedel shears of the MSF. The results from borehole investigations in the AFST indicate that secondary porosity is developed in the major reservoir due to the destruction of filling minerals and fracture development beside these shears. The increase in hydraulic conductivity is not directly related to increased density of fractures around the MSF. Development of secondary porosity could cause the increase in hydraulic conductivity around the MSF. Our results suggest that minor conduits of the fracture network are sporadically distributed in the sedimentary rocks around the MSF in the AFST. [source] Hardened foliated fault gouge from the Nojima Fault zone at Hirabayashi: Evidence for earthquake lightning accompanying the 1995 Kobe earthquake?ISLAND ARC, Issue 3-4 2001Yuji Enomoto Abstract Two anomalous features were found in the Nojima Fault zone at Hirabayashi in Awaji Island, south-west Japan: (i) hard foliated gouge between weathered granitic fault breccia and weakly consolidated mudstone of the Osaka Group; and (ii) mudstone near the gouge showing anomalous magnetization behavior. Roots of herbaceous vegetation near the foliated gouge were extraordinarily charred. In order to understand the nature of the gouge, shallow drillings were made to a depth of 3,14 m across the fault zone. Various physicochemical measurements of the gouge at depths and charred roots of herbaceous vegetation were conducted. The main results were: (i) Using electron spin resonance (ESR) analysis, the carbon radical peak (g = 2.006) of the charred roots was found to be 25 times larger than that of the non-charred roots of the same vegetation taken near the fault, indicating that the charred roots were subjected to baking; (ii) the hard foliated gouge clearly showed a lamellar structure consisting alternately of gray and black layers; (iii) the black layers in most of the foliated gouge showed flow structures almost parallel to the fault, but the gray layers rarely showed flow patterns; (iv) natural remanent magnetization (NRM) of the foliated gouge was 430 times greater than that of the granitic fault breccia and approximately 70 times greater than that of the mudstone; (v) the NRM intensity of the mudstone near the fault was highest near the ground level and decreased as the depth increased, although the magnetic susceptibility of the mudstone was almost constant and independent of depth; (vi) the high-coe civity magnetization component vectors of both the mudstone and the foliated gouge in a Schmidt equal-area projection was quite different from that of the present direction of the Earth's field; and (vii) using a magnetic force microscope, intense magnetic force lines were found in the black parts of the foliated gouge. It is suggested that these anomalies were possibly caused by earthquake lightning that accompanied the 1995 Kobe earthquake. In a spark plasma sintering test, which was conducted to simulate the possibility of earthquake lightning-induced sintering of the gouge, weakly altered gouge was successfully sintered within 10 s. The hardness of sintered sample was comparable to that of the hard foliated gouge. [source] Late Cretaceous blueschist facies metamorphism in southern Thrace (Turkey) and its geodynamic implicationsJOURNAL OF METAMORPHIC GEOLOGY, Issue 9 2008G. TOPUZ Abstract A blueschist facies tectonic sliver, 9 km long and 1 km wide, crops out within the Miocene clastic rocks bounded by the strands of the North Anatolian Fault zone in southern Thrace, NW Turkey. Two types of blueschist facies rock assemblages occur in the sliver: (i) A serpentinite body with numerous dykes of incipient blueschist facies metadiabase (ii) a well-foliated and thoroughly recrystallized rock assemblage consisting of blueschist, marble and metachert. Both are partially enveloped by an Upper Eocene wildflysch, which includes olistoliths of serpentinite,metadiabase, Upper Cretaceous and Palaeogene pelagic limestone, Upper Eocene reefal limestone, radiolarian chert, quartzite and minor greenschist. Field relations in combination with the bore core data suggest that the tectonic sliver forms a positive flower structure within the Miocene clastic rocks in a transpressional strike,slip setting, and represents an uplifted part of the pre-Eocene basement. The blueschists are represented by lawsonite,glaucophane-bearing assemblages equilibrated at 270,310 °C and ,0.8 GPa. The metadiabase dykes in the serpentinite, on the other hand, are represented by pumpellyite,glaucophane,lawsonite-assemblages that most probably equilibrated below 290 °C and at 0.75 GPa. One metadiabase olistolith in the Upper Eocene flysch sequence contains the mineral assemblage epidote + pumpellyite + glaucophane, recording P,T conditions of 290,350 °C and 0.65,0.78 GPa, indicative of slightly lower depths and different thermal setting. Timing of the blueschist facies metamorphism is constrained to c. 86 Ma (Coniacian/Santonian) by Rb,Sr phengite,whole rock and incremental 40Ar,39Ar phengite dating on blueschists. The activity of the strike,slip fault post-dates the blueschist facies metamorphism and exhumation, and is only responsible for the present outcrop pattern and post-Miocene exhumation (,2 km). The high- P/T metamorphic rocks of southern Thrace and the Biga Peninsula are located to the southeast of the Circum Rhodope Belt and indicate Late Cretaceous subduction and accretion under the northern continent, i.e. the Rhodope Massif, enveloped by the Circum Rhodope Belt. The Late Cretaceous is therefore a time of continued accretionary growth of this continental domain. [source] Mineral precipitation associated with vertical fault zones: the interaction of solute advection, diffusion and chemical kineticsGEOFLUIDS (ELECTRONIC), Issue 1 2007CHONGBIN ZHAO Abstract This article is concerned with chemical reactions that occur between two interacting parallel fluid flows using mixing in vertical faults as an example. Mineral precipitation associated with fluid flow in permeable fault zones results in mineralization and chemical reaction (alteration) patterns, which in turn are strongly dependent on interactions between solute advection (controlled by fluid flow rates), solute diffusion/dispersion and chemical kinetics. These interactions can be understood by simultaneously considering two dimensionless numbers, the Damköhler number and the Z -number. The Damköhler number expresses the interaction between solute advection (flow rate) and chemical kinetics, while the Z -number expresses the interaction between solute diffusion/dispersion and chemical kinetics. Based on the Damköhler and Z -numbers, two chemical equilibrium length-scales are defined, dominated by either solute advection or by solute diffusion/dispersion. For a permeable vertical fault zone and for a given solute diffusion/dispersion coefficient, there exist three possible types of chemical reaction patterns, depending on both the flow rate and the chemical reaction rate. These three types are: (i) those dominated by solute diffusion and dispersion resulting in precipitation at the lower tip of a vertical fault and as a thin sliver within the fault, (ii) those dominated by solute advection resulting in precipitation at or above the upper tip of the fault, and (iii) those in which advection and diffusion/dispersion play similar roles resulting in wide mineralization within the fault. Theoretical analysis indicates that there exists both an optimal flow rate and an optimal chemical reaction rate, such that chemical equilibrium following focusing and mixing of two fluids may be attained within the fault zone (i.e. type 3). However, for rapid and parallel flows, such as those resulting from a lithostatic pressure gradient, it is difficult for a chemical reaction to reach equilibrium within the fault zone, if the two fluids are not well mixed before entering the fault zone. Numerical examples are given to illustrate the three possible types of chemical reaction patterns. [source] Hydraulic observations from a 1 year fluid production test in the 4000 m deep KTB pilot boreholeGEOFLUIDS (ELECTRONIC), Issue 1 2006W. GRÄSLE Abstract A long-term pump test was conducted in the KTB pilot borehole (KTB-VB), located in the Oberpfalz area, Germany. It produced 22 300 m3 of formation fluid. Initially, fluid production rate was 29 l min,1 for 4 months, but was then raised to an average of 57 l min,1 for eight more months. The aim of this study was to examine the fluid parameters and hydraulic properties of fractured, crystalline crusts as part of the new KTB programme ,Energy and Fluid Transport in Continental Fault Systems'. KTB-VB has an open-hole section from 3850 to 4000 m depth that is in hydraulic contact with a prominent continental fault system in the area, called SE2. Salinity and temperature of the fluid inside the borehole, and consequently hydrostatic pressure, changed significantly throughout the test. Influence of these quantities on variations in fluid density had to be taken into account for interpretation of the pump test. Modelling of the pressure response related to the pumping was achieved assuming the validity of linear Darcy flow and permeability to be independent of the flow rate. Following the principle ,minimum in model dimension', we first examined whether the pressure response can be explained by an equivalent model where rock properties around the borehole are axially symmetric. Calculations show that the observed pressure data in KTB-VB can in fact be reproduced through such a configuration. For the period of high pumping rate (57 l min,1) and the following recovery phase, the resulting parameters are 2.4 × 10,13 m3 in hydraulic transmissivity and 3.7 × 10,9 m Pa,1 in storativity for radial distances up to 187 m, and 4.7 × 10,14 m3 and 6.0 × 10,9 m Pa,1, respectively, for radial distances between 187 and 1200 m. The former pair of values mainly reflect the hydraulic properties of the fault zone SE2. For a more realistic hydraulic study on a greater scale, program FEFLOW was used. Parameter values were obtained by matching the calculated induced pressure signal to fluid-level variations observed in the KTB main hole (KTB-HB) located at 200 m radial distance from KTB-VB. KTB-HB is uncased from 9031 to 9100 m and shows indications of leakage in the casing at depths 5200,5600 m. Analysis of the pressure record and hydraulic modelling suggest the existence of a weak hydraulic communication between the two boreholes, probably at depths around the leakage. Hydraulic modelling of a major slug-test in KTB-HB that was run during the pumping in KTB-VB reveals the effective transmissivity of the connected formation to be 1 to 2 orders of magnitude lower than the one determined for the SE2 fault zone. [source] Communication between overpressured compartmentsGEOFLUIDS (ELECTRONIC), Issue 4 2001M. Wangen Abstract Overpressure build-up in compartments, and communication between overpressured compartments across faults are studied with simple analytical and numerical models. It is shown that the excess pressure in a (vertical) one-dimensional, one-compartment model can be written as the sum of the excess pressure generated in the seal above the compartment, and a second part, which is due to the expulsion of fluid from the compartment and the rocks below. The one-compartment model is generalized to a two-compartment model, which accounts for the fluid communication between the compartments through a fault zone. The volume rates of flow through the seals and the fault zone are shown to be the weighted mean of the volume rates of the one-dimensional, one-compartment model. The normalized weights are given by dimensionless numbers, called fault,seal numbers, which control the communication between the compartments. A fault,seal number much less than unity implies that the fault is a stronger barrier for the fluid flow than the seal. A fault,seal number larger than unity implies the opposite: that the seal is a stronger barrier than the fault. The conditions for isolated compartments and other regimes are identified in terms of the fault,seal numbers. It is discussed how the compartment fault,seal numbers can be computed when the permeability is given in the fault zone. The results given by the analytical compartment models are demonstrated and validated with two-dimensional numerical (finite element) simulations. [source] Extensional development of the Fundy rift basin, southeastern CanadaGEOLOGICAL JOURNAL, Issue 6 2009Martha O. Withjack Abstract The Fundy rift basin of Nova Scotia and New Brunswick, Canada, is part of the Eastern North American rift system that formed during the breakup of Pangaea. Integrated seismic-reflection, field, digital-elevation and aeromagnetic data indicate that the Fundy rift basin underwent two phases of deformation: syn-rift extension followed by post-rift basin inversion. Inversion significantly modified the geometries of the basin and its rift-related structures. In this paper, we remove the effects of inversion to examine the basin's extensional development. The basin consists of three structural subbasins: the Fundy and Chignecto subbasins are bounded by low-angle, NE-striking faults; the Minas subbasin is bounded by E- to ENE-striking faults that are steeply dipping at the surface and gently dipping at depth. Together, these linked faults form the border,fault system of the Fundy rift basin. Most major faults within the border,fault system originated as Palaeozoic contractional structures. All syn-rift units imaged on seismic profiles thicken towards the border,fault system, reflecting extensional movement from Middle Triassic (and possibly Permian) through Early Jurassic time. Intra-rift unconformities, observed on seismic profiles and in the field, indicate that uplift and erosion occurred, at least locally, during rifting. Based on seismic data alone, the displacement direction of the hanging wall of the border,fault system of the Fundy rift basin ranged from SW to SE during rifting. Field data (i.e. NE-striking igneous dykes, sediment-filled fissures and normal faults) indicate NW,SE extension during Early Jurassic time, supporting a SE-displacement direction. With a SE-displacement direction, the NE-striking border,fault zones of the Fundy and Chignecto subbasins had predominantly normal dip slip during rifting, whereas the E-striking border,fault zone of the Minas subbasin had oblique slip with left-lateral and normal components. Sequential restorations of seismic-reflection profiles (coupled with projections from onshore geology) show that the Fundy rift basin underwent 10,20,km of extension, most of which was accommodated by the border,fault system, and was considerably wider and deeper prior to basin inversion. Post-rift deformation tilted the eastern side of the basin to the northwest/north, producing significant uplift and erosion. Copyright © 2009 John Wiley & Sons, Ltd. [source] Major neotectonic features of eastern Marmara region, Turkey: development of the Adapazar,,Karasu corridor and its tectonic significanceGEOLOGICAL JOURNAL, Issue 2 2004nç Yi Abstract Eastern Marmara region consists of three different morphotectonic units: Thrace,Kocaeli Peneplain (TKP) and Çamda,,Akçakoca Highland (ÇAH) in the north, and Armutlu,Almac,k Highland in the south of the North Anatolian Fault Zone (NAFZ). The geologic-morphologic data and seismic profiles from the Sakarya River offshore indicate that the boundary between the TKP in the west and ÇAH in the east is a previously unrecognized major NNE,SSW-trending strike-slip fault zone with reverse component. The fault zone is a distinct morphotectonic corridor herein named the Adapazar,,Karasu corridor (AKC) that runs along the Sakarya River Valley and extends to its submarine canyon along the southern margin of the Black Sea in the north. It formed as a transfer fault zone between the TKP and ÇAH during the Late Miocene; the former has been experiencing extensional forces and the latter compressional forces since then. East,West-trending segments of the NAFZ cuts the NE,SW-trending AKC and their activity has resulted in the formation of a distinct fault-bounded morphology, which is characterized by alternating E,W highlands and lowlands in the AKC. Furthermore, this activity has resulted in the downward motion of an ancient delta and submarine canyon of the Sakarya River in the northern block of the NAFZ below sea level so that the waters of the Black Sea invaded them. The NE,SW-trending faults in the AKC were reactivated with the development of the NAFZ in the Late Pliocene, which then caused block motions and microseismic activities throughout the AKC. Copyright © 2004 John Wiley & Sons, Ltd. [source] Tapovan-Vishnugad hydroelectric power project , experience with TBM excavation under high rock cover / . Tapovan-Vishnugad Wasserkraftwerk , Erfahrungen mit TBM-Vortrieb bei hoher ÜberlagerungGEOMECHANICS AND TUNNELLING, Issue 5 2010Johann Brandl Mechanised tunnelling - Maschineller Vortrieb; Hydro power plants - Wasserkraftanlagen Abstract NTPC Ltd. of India is presently constructing the 520 MW (4 x 30 MW) Tapovan-Vishnugad hydroelectric power plant in Uttarakhand in the Himalayas. As part of this project, an approximately 12.1 km head race tunnel (HRT) is to be constructed, of which approximately 8.6 km are being excavated by DS-TBM with an excavation diameter of 6.575 m. Construction of this HRT has been awarded to a Joint Venture (JV) of Larsen, Toubro Ltd., India, and Alpine, Austria. Geoconsult ZT GmbH is acting as a Consultant to NTPC Ltd. for the TBM part of the HRT. The overburden above the tunnel is up to 1, 100 m with the result that knowledge of the geology along the HRT alignment could only be based on projections made from surface exposures available in the area. Basically, the ground consists of jointed quartzite, gneiss and schist. Excavation of the HRT started in October 2008 and excavation rates of over 500 m per month were achieved in November 2009. However, in December 2009 the TBM encountered a fault zone along with high-pressure water inflow and became trapped. This paper outlines the present status of HRT construction and describes in particular the difficulties encountered during TBM excavation in fault zones with large high-pressure water inflows and how these problems are being dealt with. Die indische Firma NTPC Ltd. errichtet derzeit das 520 MW (4 x 130 MW) Tapovan-Vishnugad Wasserkraftwerk in Uttarakhand, Himalaya. Als Teil dieses Projekts wird ein ungefähr 12,1 km langer Triebwasserstollen (TWS) errichtet, wobei rund 8,6 km davon mittels einer DS-TBM mit einem Ausbruchdurchmesser von 6.575 m aufgefahren werden. Der Bau dieses Triebwasserstollens wurde an die Arbeitsgemeinschaft Larsen, Toubro Ltd., Indien, und Alpine, Österreich vergeben. Geoconsult ZT GmbH fungiert als Berater von NTPC Ltd. für den TBM-Teil des TWS. Aufgrund der Überlagerung des Tunnels von bis zu 1,100 m konnte die Geologie entlang des Triebwasserstollens nur durch Projektion von vorhandenen Oberflächenaufschlüssen aus der Umgebung bestimmt werden. Das Gebirge besteht hauptsächlich aus geklüftetem Quarzit, Gneis und Schiefer. Der Ausbruch des TWS begann im Oktober 2008. Im November 2009 wurde eine Vortriebsgeschwindigkeit von über 500 m pro Monat erreicht. Im Dezember 2009 jedoch fuhr die TBM eine Störzone mit einem Hochdruckwassereinbruch an, wodurch die TBM stecken blieb. Dieser Artikel skizziert den derzeitigen Stand des TWS und legt besonderes Augenmerk auf die Schwierigkeiten beim Auffahren der Störzone inklusive Hochdruckwassereinbruch mit einer TBM. Darüber hinaus wird gezeigt, wie sich die auftretenden Probleme lösen lassen. [source] Geomechanics and Tunnelling 2/2010GEOMECHANICS AND TUNNELLING, Issue 1 2010Article first published online: 24 FEB 2010 Semmering and Koralm tunnels Neue Südbahn, Semmering und Koralm Tunnel F. Bauer: Investment in the Austrian rail network , overview of new and upgrading projects , Investitionen in das österreichische Schienennetz , Überblick Neu- und Ausbauvorhaben G. Gobiet and D. Haas: New Semmering Base Tunnel project , an interdisciplinary challenge , Semmering Basistunnel Neu , eine interdisziplinäre Herausforderung A. Fasching, R. Vanek, Th. Stadlmann, P. Reichl, G. Domberger, G. Forstinger and O. Wagner: New Semmering Base Tunnel , the investigation programme 2008/2009 and the knowledge gained in the areas of geology, hydrogeology and geotechnical engineering , Semmering-Basistunnel Neu , Das Erkundungsprogramm 2008/2009 und die daraus gewonnenen Erkenntnisse auf den Gebieten der Geologie, Hydrogeologie und Geotechnik J. Daller, A. Vigl and O. Wagner: New Semmering Base Tunnel , the current state of tunnel design taking the newest investigation results into account , Semmering-Basistunnel Neu , Aktueller Stand der Tunnelplanung unter Berücksichtigung der neuesten Erkundungsergebnisse R. Bopp, V. Langer, Ch. Neumann and O. Wagner: The ventilation and tunnel safety concept for the New Semmering Base Tunnel , Das Lüftungs- und Tunnelsicherheitskonzept für den Semmering-Basistunnel Neu G. Harer and J. Koinig: Current state of design, investigation and construction work at the Koralm Tunnel , Aktueller Stand der Planungs-, Erkundungs- und Ausführungsarbeiten beim Koralmtunnel P. Schubert, H. Hölzl, P. Sellner and F. Fasching: Geomechanical knowledge gained from the Paierdorf Investigation Tunnel in the section through the Lavanttal main fault zone , Geomechanischer Wissenszuwachs durch den Erkundungstunnel Paierdorf im Abschnitt der Lavanttaler Hauptstörungszone D. Handke, M. Nolden, K. Mussger and A. Steidl: Solution methods for the design and construction of contract KAT 3 , Lösungsansätze für Planung und Bauausführung des Bauloses KAT 3 M. Vill, H. Wagner, A. Schweighofer, H. Huber, W. Pichler and J. Kollegger: New development of a crack-limited invert slab , Neuentwicklung der rissebeschränkten Sohlplatte M. Stopka: Hengsberg Tunnel , the construction contract as seen by the contractor , Hengsbergtunnel , der Bauvertrag aus Sicht des Auftragnehmers T. Schachinger, H. Gaube and G. Krainer: Results from the Untersammelsdorf test field for the planning of the tunnelling work , Erkenntnisse aus dem Versuchsfeld Untersammelsdorf für die Gestaltung der Vortriebsmaßnahmen K. Chmelina and K. Rabensteiner: Improvement of the safety and profitability of tunnel drives through the use of automated measurement and alarm systems , examples in practice , Verbesserung der Sicherheit und Wirtschaftlichkeit von Tunnelvortrieben durch den Einsatz automatisierter Mess- und Alarm-systeme , Ausführungsbeispiele [source] Three-dimensional models of elastostatic deformation in heterogeneous media, with applications to the Eastern California Shear ZoneGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2009Sylvain Barbot SUMMARY We present a semi-analytic iterative procedure for evaluating the 3-D deformation due to faults in an arbitrarily heterogeneous elastic half-space. Spatially variable elastic properties are modelled with equivalent body forces and equivalent surface traction in a ,homogenized' elastic medium. The displacement field is obtained in the Fourier domain using a semi-analytic Green function. We apply this model to investigate the response of 3-D compliant zones (CZ) around major crustal faults to coseismic stressing by nearby earthquakes. We constrain the two elastic moduli, as well as the geometry of the fault zones by comparing the model predictions to Synthetic Aperture Radar inferferometric (InSAR) data. Our results confirm that the CZ models for the Rodman, Calico and Pinto Mountain faults in the Eastern California Shear Zone (ECSZ) can explain the coseismic InSAR data from both the Landers and the Hector Mine earthquakes. For the Pinto Mountain fault zone, InSAR data suggest a 50 per cent reduction in effective shear modulus and no significant change in Poisson's ratio compared to the ambient crust. The large wavelength of coseismic line-of-sight displacements around the Pinto Mountain fault requires a fairly wide (,1.9 km) CZ extending to a depth of at least 9 km. Best fit for the Calico CZ, north of Galway Dry Lake, is obtained for a 4 km deep structure, with a 60 per cent reduction in shear modulus, with no change in Poisson's ratio. We find that the required effective rigidity of the Calico fault zone south of Galway Dry Lake is not as low as that of the northern segment, suggesting along-strike variations of effective elastic moduli within the same fault zone. The ECSZ InSAR data is best explained by CZ models with reduction in both shear and bulk moduli. These observations suggest pervasive and widespread damage around active crustal faults. [source] Seismic reflection coefficients of faults at low frequencies: a model studyGEOPHYSICAL PROSPECTING, Issue 3 2008Joost Van Der Neut ABSTRACT We use linear slip theory to evaluate seismic reflections at non-welded interfaces, such as faults or fractures, sandwiched between general anisotropic media and show that at low frequencies the real parts of the reflection coefficients can be approximated by the responses of equivalent welded interfaces, whereas the imaginary parts can be related directly to the interface compliances. The imaginary parts of low frequency seismic reflection coefficients at fault zones can be used to estimate the interface compliances, which can be related to fault properties upon using a fault model. At normal incidence the expressions uncouple and the complex-valued P-wave reflection coefficient can be related linearly to the normal compliance. As the normal compliance is highly sensitive to the infill of the interface, it can be used for gas/fluid identification in the fault plane. Alternatively, the tangential compliance of a fault can be estimated from the complex-valued S-wave reflection coefficient. The tangential compliance can provide information on the crack density in a fault zone. Coupling compliances can be identified and quantified by the observation of PS conversion at normal incidence, with a comparable linear relationship. [source] Using Temperature to Test Models of Flow Near Yucca Mountain, NevadaGROUND WATER, Issue 5 2003Scott Painter Ground water temperatures in the fractured volcanic aquifer near Yucca Mountain, Nevada, have previously been shown to have significant spatial variability with regions of elevated temperatures coinciding roughly with near-vertical north-south trending faults. Using insights gained from one-dimensional models, previous investigators have suggested upwelling along faults from an underlying aquifer as a likely explanation for this ground water temperature pattern. Using a three-dimensional coupled flow and heat-transport model, we show that the thermal high coinciding with the Paintbrush fault zone can be explained without significant upwelling from the underlying aquifer. Instead, the thermal anomaly is consistent with thermal conduction enhanced slightly by vertical ground water movement within the volcanic aquifer sequence. If more than -400 m3/day of water enters the volcanic aquifer from below along a 10 km fault zone, the calculated temperatures at the water table are significantly greater than the measured temperatures. These results illustrate the potential limitations in using one-dimensional models to interpret ground water temperature data, and underscore the value in combining temperature data with fully coupled three-dimensional simulations. [source] Transpressional tectonics of the Mineoka Ophiolite Belt in a trench,trench,trench-type triple junction, Boso Peninsula, JapanISLAND ARC, Issue 4 2005Ryota Mori Abstract Structures developed in metamorphic and plutonic blocks that occur as knockers in the Mineoka Ophiolite Belt in the Boso Peninsula, central Japan, were analyzed. The aim was to understand the incorporation processes of blocks of metamorphic and plutonic rocks with an arc signature into the serpentinite mélange of the Mineoka Ophiolite Belt in relation to changes in metamorphic conditions during emplacement. Several stages of deformation during retrogressive metamorphism were identified: the first faulting stage had two substage shearing events (mylonitization) under ductile conditions inside the crystalline blocks in relatively deeper levels; and the second stage had brittle faulting and brecciation along the boundaries between the host serpentinite bodies in relatively shallower levels (zeolite facies). The first deformation occurred during uplift before emplacement. The blocks were intensively sheared by the first deformation event, and developed numerous shear planes with spacing of a few centimeters. The displacement and width of each shear plane were a few centimeters and a few millimeters, respectively, at most. In contrast, the fault zone of the second shearing stage reached a few meters in width and developed during emplacement of the Mineoka Ophiolite. Both stages occurred under a right-lateral transpressional regime, in which thrust-faulting was associated with strike-slip faulting. Such displacement on an outcrop scale is consistent with the present tectonics of the Mineoka Belt. This implies that the same tectonic stress has been operating in the Boso trench,trench,trench-type triple junction area in the northwest corner of the Pacific since the emplacement of the Mineoka Ophiolite. The Mineoka Ophiolite Belt must have worked as a forearc sliver fault during the formation of a Neogene accretionary prism further south. [source] Quaternary vertical offset and average slip rate of the Nojima Fault on Awaji Island, JapanISLAND ARC, Issue 3-4 2001Akihiro Murata Abstract Drilling was carried out to penetrate the Nojima Fault where the surface rupture occurred associated with the 1995 Hyogo-ken Nanbu earthquake. Two 500 m boreholes were successfully drilled through the fault zone at a depth of 389.4 m. The drilling data show that the relative uplift of the south-east side of the Nojima Fault (south-west segment) was approximately 230 m. The Nojima branch fault, which branches from the Nojima Fault, is inferred to extend to the Asano Fault. From the structural contour map of basal unconformity of the Kobe Group, the vertical component of displacement of the Nojima branch,Asano Fault is estimated to be 260,310 m. Because the vertical component of displacement on the Nojima Fault of the north-east segment is a total of those of the Nojima Fault of the south-west segment and of the Nojima branch,Asano Fault, it is estimated to total to 490,540 m. From this, the average vertical component of the slip rate on the Nojima Fault is estimated to be 0.4,0.45 m/103 years for the past 1.2 million years. [source] Hardened foliated fault gouge from the Nojima Fault zone at Hirabayashi: Evidence for earthquake lightning accompanying the 1995 Kobe earthquake?ISLAND ARC, Issue 3-4 2001Yuji Enomoto Abstract Two anomalous features were found in the Nojima Fault zone at Hirabayashi in Awaji Island, south-west Japan: (i) hard foliated gouge between weathered granitic fault breccia and weakly consolidated mudstone of the Osaka Group; and (ii) mudstone near the gouge showing anomalous magnetization behavior. Roots of herbaceous vegetation near the foliated gouge were extraordinarily charred. In order to understand the nature of the gouge, shallow drillings were made to a depth of 3,14 m across the fault zone. Various physicochemical measurements of the gouge at depths and charred roots of herbaceous vegetation were conducted. The main results were: (i) Using electron spin resonance (ESR) analysis, the carbon radical peak (g = 2.006) of the charred roots was found to be 25 times larger than that of the non-charred roots of the same vegetation taken near the fault, indicating that the charred roots were subjected to baking; (ii) the hard foliated gouge clearly showed a lamellar structure consisting alternately of gray and black layers; (iii) the black layers in most of the foliated gouge showed flow structures almost parallel to the fault, but the gray layers rarely showed flow patterns; (iv) natural remanent magnetization (NRM) of the foliated gouge was 430 times greater than that of the granitic fault breccia and approximately 70 times greater than that of the mudstone; (v) the NRM intensity of the mudstone near the fault was highest near the ground level and decreased as the depth increased, although the magnetic susceptibility of the mudstone was almost constant and independent of depth; (vi) the high-coe civity magnetization component vectors of both the mudstone and the foliated gouge in a Schmidt equal-area projection was quite different from that of the present direction of the Earth's field; and (vii) using a magnetic force microscope, intense magnetic force lines were found in the black parts of the foliated gouge. It is suggested that these anomalies were possibly caused by earthquake lightning that accompanied the 1995 Kobe earthquake. In a spark plasma sintering test, which was conducted to simulate the possibility of earthquake lightning-induced sintering of the gouge, weakly altered gouge was successfully sintered within 10 s. The hardness of sintered sample was comparable to that of the hard foliated gouge. [source] Fluid flow and Al transport during quartz-kyanite vein formation, Unst, Shetland Islands, ScotlandJOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2010C. E. BUCHOLZ Abstract Quartz-kyanite veins, adjacent alteration selvages and surrounding ,precursor' wall rocks in the Dalradian Saxa Vord Pelite of Unst in the Shetland Islands (Scotland) were investigated to constrain the geochemical alteration and mobility of Al associated with channelized metamorphic fluid infiltration during the Caledonian Orogeny. Thirty-eight samples of veins, selvages and precursors were collected, examined using the petrographic microscope and electron microprobe, and geochemically analysed. With increasing grade, typical precursor mineral assemblages include, but are not limited to, chlorite+chloritoid, chlorite+chloritoid+kyanite, chlorite+chloritoid+staurolite and garnet+staurolite+kyanite+chloritoid. These assemblages coexist with quartz, white mica (muscovite, paragonite, margarite), and Fe-Ti oxides. The mineral assemblage of the selvages does not change noticeably with metamorphic grade, and consists of chloritoid, kyanite, chlorite, quartz, white mica and Fe-Ti oxides. Pseudosections for selvage and precursor bulk compositions indicate that the observed mineral assemblages were stable at regional metamorphic conditions of 550,600 °C and 0.8,1.1 GPa. A mass balance analysis was performed to assess the nature and magnitude of geochemical alteration that produced the selvages adjacent to the veins. On average, selvages lost about ,26% mass relative to precursors. Mass losses of Na, K, Ca, Rb, Sr, Cs, Ba and volatiles were ,30 to ,60% and resulted from the destruction of white mica. Si was depleted from most selvages and transported locally to adjacent veins; average selvage Si losses were about ,50%. Y and rare earth elements were added due to the growth of monazite in cracks cutting apatite. The mass balance analysis also suggests some addition of Ti occurred, consistent with the presence of rutile and hematite-ilmenite solid solutions in veins. No major losses of Al from selvages were observed, but Al was added in some cases. Consequently, the Al needed to precipitate vein kyanite was not derived locally from the selvages. Veins more than an order of magnitude thicker than those typically observed in the field would be necessary to accommodate the Na and K lost from the selvages during alteration. Therefore, regional transport of Na and K out of the local rock system is inferred. In addition, to account for the observed abundances of kyanite in the veins, large fluid-rock ratios (102,103 m3fluid m,3rock) and time-integrated fluid fluxes in excess of ,104 m3fluid m,2rock are required owing to the small concentrations of Al in aqueous fluids. It is concluded that the quartz-kyanite veins and their selvages were produced by regional-scale advective mass transfer by means of focused fluid flow along a thrust fault zone. The results of this study provide field evidence for considerable Al mass transport at greenschist to amphibolite facies metamorphic conditions, possibly as a result of elevated concentrations of Al in metamorphic fluids due to alkali-Al silicate complexing at high pressures. [source] Reaction localization and softening of texturally hardened mylonites in a reactivated fault zone, central ArgentinaJOURNAL OF METAMORPHIC GEOLOGY, Issue 6 2005S. J. WHITMEYER Abstract The Tres Arboles ductile fault zone in the Eastern Sierras Pampeanas, central Argentina, experienced multiple ductile deformation and faulting events that involved a variety of textural and reaction hardening and softening processes. Much of the fault zone is characterized by a (D2) ultramylonite, composed of fine-grained biotite + plagioclase, that lacks a well-defined preferred orientation. The D2 fabric consists of a strong network of intergrown and interlocking grains that show little textural evidence for dislocation or dissolution creep. These ultramylonites contain gneissic rock fragments and porphyroclasts of plagioclase, sillimanite and garnet inherited from the gneissic and migmatitic protolith (D1) of the hangingwall. The assemblage of garnet + sillimanite + biotite suggests that D1-related fabrics developed under upper amphibolite facies conditions, and the persistence of biotite + garnet + sillimanite + plagioclase suggests that the ultramylonite of D2 developed under middle amphibolite facies conditions. Greenschist facies, mylonitic shear bands (D3) locally overprint D2 ultramylonites. Fine-grained folia of muscovite + chlorite ± biotite truncate earlier biotite + plagioclase textures, and coarser-grained muscovite partially replaces relic sillimanite grains. Anorthite content of shear band (D3) plagioclase is c. An30, distinct from D1 and D2 plagioclase (c. An35). The anorthite content of D3 plagioclase is consistent with a pervasive grain boundary fluid that facilitated partial replacement of plagioclase by muscovite. Biotite is partially replaced by muscovite and/or chlorite, particularly in areas of inferred high strain. Quartz precipitated in porphyroclast pressure shadows and ribbons that help define the mylonitic fabric. All D3 reactions require the introduction of H+ and/or H2O, indicating an open system, and typically result in a volume decrease. Syntectonic D3 muscovite + quartz + chlorite preferentially grew in an orientation favourable for strain localization, which produced a strong textural softening. Strain localization occurred only where reactions progressed with the infiltration of aqueous fluids, on a scale of hundreds of micrometre. Local fracturing and microseismicity may have induced reactivation of the fault zone and the initial introduction of fluids. However, the predominant greenschist facies deformation (D3) along discrete shear bands was primarily a consequence of the localization of replacement reactions in a partially open system. [source] PETROLEUM SEEPAGES AT ASUK, DISKO, WEST GREENLAND: IMPLICATIONS FOR REGIONAL PETROLEUM EXPLORATIONJOURNAL OF PETROLEUM GEOLOGY, Issue 3 2007J. A. Bojesen-Koefoed Organic geochemical screening and biological marker analysis was carried out on a total of 45 Albian-Cenomanian sandstone and mudstone samples collected from a landslide block on thenorth coast of Disko island, central West Greenland. The landslide block covers an area of severalsquare kilometres, and originated approximately 400 m up-section from where it moved to itspresent position after the last glaciation. The mudstones are generally rich in organic carbon butshow no potential for petroleum generation. However, biodegraded oil stains were found in thepoorly lithified sandstones. Staining by undegraded or only slightly degraded oil in volcanic rocks iscommon in this region, but the occurrence described here is the only known outcrop where staining occurs in siliciclastic sediments, and also the only one known in which the oil is severely biodegraded. The oil stains appear to represent a biodegraded variety of the Cretaceous marine shale derived Itilli oil type which is known from many locations in the Disko-Nussusaq-Svartenhuk Halvø region. The oils entered the sandstones before the landslide event, probably during or beforethe extrusion of the volcanic succession in the Paleogene. This is the first time that a petroleum seepage has been found to the east of the Kuugannguaq-Qunnillik fault zone, which is located approximately 30 km west of Asuk. The presence of stainingby marine oil at Asuk demonstrates that marine petroleum source rocks were deposited muchfurther eastwards than was previously thought, thus expanding the area of potential explorationsignificantly. The presence of marine source rocks to the east of the Kuugannguaq-Qunnillik faultzone may explain the frequent observation of Direct Hydrocarbon Indicators in seismic datacollected in the Vaigat Sound. [source] |