Fault Plane (fault + plane)

Distribution by Scientific Domains


Selected Abstracts


A unified continuum representation of post-seismic relaxation mechanisms: semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2010
Sylvain Barbot
SUMMARY We present a unified continuum mechanics representation of the mechanisms believed to be commonly involved in post-seismic transients such as viscoelasticity, fault creep and poroelasticity. The time-dependent relaxation that follows an earthquake, or any other static stress perturbation, is considered in a framework of a generalized viscoelastoplastic rheology whereby some inelastic strain relaxes a physical quantity in the material. The relaxed quantity is the deviatoric stress in case of viscoelastic relaxation, the shear stress in case of creep on a fault plane and the trace of the stress tensor in case of poroelastic rebound. In this framework, the instantaneous velocity field satisfies the linear inhomogeneous Navier's equation with sources parametrized as equivalent body forces and surface tractions. We evaluate the velocity field using the Fourier-domain Green's function for an elastic half-space with surface buoyancy boundary condition. The accuracy of the proposed method is demonstrated by comparisons with finite-element simulations of viscoelastic relaxation following strike-slip and dip-slip ruptures for linear and power-law rheologies. We also present comparisons with analytic solutions for afterslip driven by coseismic stress changes. Finally, we demonstrate that the proposed method can be used to model time-dependent poroelastic rebound by adopting a viscoelastic rheology with bulk viscosity and work hardening. The proposed method allows one to model post-seismic transients that involve multiple mechanisms (afterslip, poroelastic rebound, ductile flow) with an account for the effects of gravity, non-linear rheologies and arbitrary spatial variations in inelastic properties of rocks (e.g. the effective viscosity, rate-and-state frictional parameters and poroelastic properties). [source]


Delineating the rupture planes of an earthquake doublet using Source-Scanning Algorithm: application to the 2005 March 3 Ilan Doublet, northeast Taiwan

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2010
Chih-Wen Kan
SUMMARY Correct identification of the fault plane(s) associated with an earthquake doublet is a very challenging problem because the pair of events often occurs in close space and time with almost the same magnitude. Most long-period waveforms of an earthquake doublet are severely tangled and thus unsuitable for conventional waveform inversion methods. In this study, we try to resolve this issue by utilizing the recently developed Source-Scanning Algorithm (SSA). The SSA systematically searches the model space for seismic sources whose times and locations are most compatible with the observed arrivals of large amplitudes on seismograms. The identification of a seismic source is based on the brightness function, which is defined as the summation of the normalized waveform amplitudes at the predicted arrival times at all stations. By illuminating the spatiotemporal distribution of asperities during an earthquake's source process, we are able to constrain the orientation of the rupture propagation that, in turn, leads to the identification of the fault plane. A series of synthetic experiments are performed to test SSA's resolution under various scenarios including different directions of rupture propagation, imperfect station coverage and short origin time difference between the two events of a doublet. Because only short-period records are needed in the analysis, the proposed method is best suited for an earthquake doublet with a short time gap between the two events. Using the 2005 Ilan doublet (the origin time difference is only 70 s) that occurred in northeast Taiwan as an example, we show that the trace of the brightest spots moves towards the west and infer the E,W-striking plane to be the actual fault plane. [source]


A Bayesian approach to estimating tectonic stress from seismological data

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2007
Richard Arnold
SUMMARY Earthquakes are conspicuous manifestations of tectonic stress, but the non-linear relationships between the stresses acting on a fault plane, its frictional slip, and the ensuing seismic radiation are such that a single earthquake by itself provides little information about the ambient state of stress. Moreover, observational uncertainties and inherent ambiguities in the nodal planes of earthquake focal mechanisms preclude straightforward inferences about stress being drawn on the basis of individual focal mechanism observations. However, by assuming that each earthquake in a small volume of the crust represents a single, uniform state of stress, the combined constraints imposed on that stress by a suite of focal mechanism observations can be estimated. Here, we outline a probabilistic (Bayesian) technique for estimating tectonic stress directions from primary seismological observations. The Bayesian formulation combines a geologically motivated prior model of the state of stress with an observation model that implements the physical relationship between the stresses acting on a fault and the resultant seismological observation. We show our Bayesian formulation to be equivalent to a well-known analytical solution for a single, errorless focal mechanism observation. The new approach has the distinct advantage, however, of including (1) multiple earthquakes, (2) fault plane ambiguities, (3) observational errors and (4) any prior knowledge of the stress field. Our approach, while computationally demanding in some cases, is intended to yield reliable tectonic stress estimates that can be confidently compared with other tectonic parameters, such as seismic anisotropy and geodetic strain rate observations, and used to investigate spatial and temporal variations in stress associated with major faults and coseismic stress perturbations. [source]


The source process of the 2001 July 26 Skyros Island (Greece) earthquake

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2004
Zafeiria Roumelioti
SUMMARY The spatial and temporal distribution of slip during the 2001 July 26 Skyros (Greece) earthquake Moment magnitude (M 6.5) is investigated using broadband data recorded at regional distances. The applied method involves estimation of the source time functions of the examined event through an empirical Green's function approach and inversion of their shapes to estimate kinematic source parameters. Our test inversions to statistically identify the fault plane, together with the distribution of aftershocks clearly indicate sinistral strike-slip faulting. In view of the fact that the Skyros epicentre lies near the western termination of the dextral strike-slip North Anatolian Fault (NAF) into the Aegean Sea, this sinistral strike-slip motion, for the first time instrumentally identified, has great tectonic significance. The best values searched through the inversion are 0.7 s for the rise time, and 2.4 km s,1 for the rupture velocity. Most of the slip appears to be concentrated in a relatively small area around the hypocentre, while a smaller slip patch was found at relatively large depth (18,24 km). At least two of the large aftershocks following the main event also occurred at the deeper part of the fault. Smaller amounts of slip are distributed in a wider area with dimensions similar to those inferred from the aftershock distribution studies and the empirical relations applicable to Greece. [source]


Fault interactions and subduction tectonics: a re-examination of the Weber, New Zealand, earthquake sequence of 1990

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2003
Russell Robinson
SUMMARY Two moderate magnitude (Mw= 6.2 and 6.4) earthquakes in the Hikurangi subduction margin, North Island, New Zealand, occurred 3 months apart in 1990. The epicentres are nearly coincident, but the first (Weber 1, primarily normal faulting) occurred within the subducting Pacific Plate (depth about 28 km) and the second (Weber 2, a mix of thrusting and right-lateral motion) occurred within the overlying Australian Plate (depth about 13 km), the plate interface in between. The plate interface is interpreted to be locked trenchward (SE) from about the position of these events, with a transition to aseismic slip further down-dip to the NW. Several stress interaction questions are examined. First, to see whether Weber 1 triggered Weber 2, a range of possible mainshock parameters are used to calculate induced changes in the static Coulomb failure stress (,CFS). In most cases the results are consistent with triggering. Secondly, previous work showed that the rate of aftershock occurrence for Weber 1 decreased markedly about 35 days before Weber 2, recovering afterwards. To see whether aseismic pre-slip on the Weber 2 fault, as predicted by rate and state friction, could be the cause of the decrease, the same fault parameters have been used in reverse. The results are ambiguous, some fault parameters giving results consistent with the hypothesis and others not. The amount of pre-slip required for significant inhibition, however, is about equal to that in the mainshock and distributed over the entire fault plane. Thirdly, observations of episodic, aseismic slip down-dip from locked sections of other plate interfaces are becoming more common. Could such slip have triggered both Weber events? The induced changes in CFS for such slip are uniformly positive on the Weber 1 fault plane, and mostly positive on the Weber 2 fault plane, so the answer is yes. Although there is no independent evidence for aseismic slip prior to the Weber sequence, this case shows that such slip may trigger events on other nearby faults, besides loading the locked section of the plate interface. Static stress triggering considerations are thus likely to be important in subduction environments. [source]


Co-seismic slip from the 1995 July 30 Mw= 8.1 Antofagasta, Chile, earthquake as constrained by InSAR and GPS observations

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2002
M. E. Pritchard
Summary We analyse radar interferometric and GPS observations of the displacement field from the 1995 July 30 Mw= 8.1 Antofagasta, Chile, earthquake and invert for the distribution of slip along the co-seismic fault plane. Using a fixed fault geometry, we compare the use of singular-value decomposition and constrained linear inversion to invert for the slip distribution and find that the latter approach is better resolved and more physically reasonable. Separate inversions using only GPS data, only InSAR data from descending orbits, and InSAR data from both ascending and descending orbits without the GPS data illustrate the complimentary nature of GPS and the presently available InSAR data. The GPS data resolve slip near GPS benchmarks well, while the InSAR provides greater spatial sampling. The combination of ascending and descending InSAR data contributes greatly to the ability of InSAR to resolve the slip model, thereby emphasizing the need to acquire this data for future earthquakes. The rake, distribution of slip and seismic moment of our preferred model are generally consistent with previous seismic and geodetic inversions, although significant differences do exist. GPS data projected in the radar line-of-sight (LOS) and corresponding InSAR pixels have a root mean square (rms) difference of about 3 cm. Comparison of our predictions of vertical displacement and observed uplift from corraline algae have an rms of 10 cm. Our inversion and previous results reveal that the location of slip might be influenced by the 1987 Mw= 7.5 event. Our analysis further reveals that the 1995 slip distribution was affected by a 1988 Mw= 7.2 event, and might have influenced a 1998 Mw= 7.0 earthquake that occurred downdip of the 1995 rupture. Our slip inversion reveals a potential change in mechanism in the southern portion of the rupture, consistent with seismic results. Predictions of the satellite LOS displacement from a seismic inversion and a joint seismic/GPS inversion do not compare favourably with the InSAR observations. [source]


Diffraction imaging in depth

GEOPHYSICAL PROSPECTING, Issue 5 2008
T.J. Moser
ABSTRACT High resolution imaging is of great value to an interpreter, for instance to enable identification of small scale faults, and to locate formation pinch-out positions. Standard approaches to obtain high-resolution information, such as coherency analysis and structure-oriented filters, derive attributes from stacked, migrated images. Since they are image-driven, these techniques are sensitive to artifacts due to an inadequate migration velocity; in fact the attribute derivation is not based on the physics of wave propagation. Diffracted waves on the other hand have been recognized as physically reliable carriers of high- or even super-resolution structural information. However, high-resolution information, encoded in diffractions, is generally lost during the conventional processing sequence, indeed migration kernels in current migration algorithms are biased against diffractions. We propose here methods for a diffraction-based, data-oriented approach to image resolution. We also demonstrate the different behaviour of diffractions compared to specular reflections and how this can be leveraged to assess characteristics of subsurface features. In this way a rough surface such as a fault plane or unconformity may be distinguishable on a diffraction image and not on a traditional reflection image. We outline some characteristic properties of diffractions and diffraction imaging, and present two novel approaches to diffraction imaging in the depth domain. The first technique is based on reflection focusing in the depth domain and subsequent filtering of reflections from prestack data. The second technique modifies the migration kernel and consists of a reverse application of stationary-phase migration to suppress contributions from specular reflections to the diffraction image. Both techniques are proposed as a complement to conventional full-wave pre-stack depth migration, and both assume the existence of an accurate migration velocity. [source]


Seismic reflection coefficients of faults at low frequencies: a model study

GEOPHYSICAL PROSPECTING, Issue 3 2008
Joost Van Der Neut
ABSTRACT We use linear slip theory to evaluate seismic reflections at non-welded interfaces, such as faults or fractures, sandwiched between general anisotropic media and show that at low frequencies the real parts of the reflection coefficients can be approximated by the responses of equivalent welded interfaces, whereas the imaginary parts can be related directly to the interface compliances. The imaginary parts of low frequency seismic reflection coefficients at fault zones can be used to estimate the interface compliances, which can be related to fault properties upon using a fault model. At normal incidence the expressions uncouple and the complex-valued P-wave reflection coefficient can be related linearly to the normal compliance. As the normal compliance is highly sensitive to the infill of the interface, it can be used for gas/fluid identification in the fault plane. Alternatively, the tangential compliance of a fault can be estimated from the complex-valued S-wave reflection coefficient. The tangential compliance can provide information on the crack density in a fault zone. Coupling compliances can be identified and quantified by the observation of PS conversion at normal incidence, with a comparable linear relationship. [source]


Thrust geometries in unconsolidated Quaternary sediments and evolution of the Eupchon Fault, southeast Korea

ISLAND ARC, Issue 3 2004
Young-Seog Kim
Abstract The Korean peninsula is widely regarded as being located at the relatively stable eastern margin of the Asian continent. However, more than 10 Quaternary faults have recently been discovered in and reported from the southeastern part of the Korean Peninsula. One of these, the Eupchon Fault, was discovered during the construction of a primary school, and it is located close to a nuclear power plant. To understand the nature and characteristics of the Quaternary Eupchon Fault, we carried out two trench surveys near the discovery site. The fault system includes one main reverse fault (N20°E/40°SE) with approximately 4 m displacement, and a series of branch faults, cutting unconsolidated Quaternary sediments. Structures in the fault system include synthetic and antithetic faults, hanging-wall anticlines, drag folds, back thrusts, pop-up structures, flat-ramp geometries and duplexes, which are very similar to those seen in thrust systems in consolidated rocks. In the upper part of the fault system, several tip damage zones are observed, indicating that the fault system propagates upward and terminates in the upper part of the section. Pebbles along the main fault plane show a preferred orientation of long axes, indicating the fault trace. The unconformity surface between the Quaternary deposits and the underlying Tertiary andesites or Cretaceous sedimentary rocks is displaced by this fault with a reverse movement sense. The stratigraphic relationship shows normal slip sense at the lower part of the section, indicating that the fault had a normal slip movement and was reversely reactivated during the Quaternary. The inferred length of the Quaternary thrust fault, based on the relationship between fault length and displacement, is 200,2000 m. The current maximum horizontal compressive stress direction in this area is generally east-northeast,west-southwest, which would be expected to produce oblique slip on the Eupchon Fault, with reverse and right-lateral strike-slip components. [source]


In situ stress measurements in a borehole close to the Nojima Fault

ISLAND ARC, Issue 3-4 2001
Hiroaki Tsukahara
AbstractIn situ stress was measured close to the fault associated with the 1995 Kobe Earthquake (Hyogo-ken Nanbu earthquake; January 1995; M7.2) using the hydraulic fracturing method. The measurements were made approximately 2 years after the earthquake. The measured points were approximately 40 m from the fault plane at depths of about 1500 m. The maximum and the minimum horizontal compressive stresses were 45 MPa and 31 MPa, respectively. The maximum compressive stress and the maximum shear stress are very small in comparison with those of other seismically active areas. The azimuth of the maximum horizontal compressive stress was estimated from the observed azimuths of well bore breakouts at depths between 1400 m and 1600 m and was found to be N135° (clockwise). The maximum stress axis is perpendicular to the fault strike, N45°. These features are interpreted in terms of a small frictional coefficient of the fault. The shear stress on the fault was released and dropped almost to zero during the earthquake and it has not yet recovered. Zero shear stress on the fault plane resulted from the perpendicular orientation of one of the principal stress to the fault plane. [source]


Stresses at sites close to the Nojima Fault measured from core samples

ISLAND ARC, Issue 3-4 2001
Kiyohiko Yamamoto
Abstract The Nojima Fault in Awaji, Hyogo prefecture, Japan, was ruptured during the 1995 Hyogo-ken Nanbu earthquake (MJMA = 7.2). Toshima is located close to the fault segment, in which a large dislocation has been observed on the Earth's surface. Ikuha is near the southern end of the buried fault that extends from the surface rupture. Stresses are measured on core samples taken at depths of 310 m, 312 m and 415 m at Toshima and a depth of 351 m at Ikuha. The measured stresses show that both sites are in the field of a strike,slip regime, but compression dominates at Toshima. Defining the relative shear stress as the maximum shear stress divided by the normal stress on the maximum shear plane, the relative shear stress ranges from 0.42 to 0.54 at Toshima and is approximately 0.32 at Ikuha. While the value at Ikuha is moderate, those at Toshima are comparably large to those in areas close to the inferred fault of the 1984 Nagano-ken Seibu earthquake. Value amounts greater than 0.4 suggest that there are areas of large relative shear stress along faults, thus having the potential to generate earthquakes. Provided that the cores are correctly oriented, the largest horizontal stresses at shallow depths are in the direction from N113°E to N139°E at Toshima and N74°E at Ikuha, indicating that the fault does not orient optimally for the stress field at both sites. The slip is known to be predominant in the right-lateral strike,slip component. Although this slip may appear contradictory to the stress field at Toshima, the slip direction is found to be parallel to the measured stresses resolved on the fault plane for the first approximation. The ratio of shear stress to normal stress on the fault plane is roughly estimated to be greater than zero and smaller than 0.3 near Toshima. [source]


Thermal anomaly around the Nojima Fault as detected by fission-track analysis of Ogura 500 m borehole samples

ISLAND ARC, Issue 3-4 2001
Takahiro Tagami
Abstract To better understand heat generation and transfer along earthquake faults, this paper presents preliminary zircon fission-track (FT) length data from the Nojima Fault, Awaji Island, Japan, which was activated during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake). Samples were collected of Cretaceous granitic rocks from the Ogura 500 m borehole as well as at outcrops adjacent to the borehole site. The Nojima Fault plane was drilled at a depth of 389.4 m (borehole apparent depth). Fission-track lengths in zircons from localities > 60 m distance from the fault plane, as well as those from outcrops, are characterized by the mean values of ,10,11 ,m and unimodal distributions with positive skewness, which show no signs of an appreciable reduction in FT length. In contrast, those from nearby the fault at depths show significantly reduced mean track lengths of ,6,8 ,m and distributions having a peak around 6,7 ,m with rather negative skewness. In conjunction with other geological constraints, these results are best interpreted by a recent thermal anomaly around the fault, which is attributable to heat transfer via focused fluids from the deep interior of the crust and/or heat dispersion via fluids associated with frictional heating by fault motion. [source]


FAULT-RELATED SOLUTION CLEAVAGE IN EXPOSED CARBONATE RESERVOIR ROCKS IN THE SOUTHERN APENNINES, ITALY

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2001
A. Billi
The deformation associated with a number of kilometre-scale strike-slip fault zones which cut through outcropping carbonate rocks in the Southern Apennines was investigated at regional and outcrop scales. These faults trend roughly east-west and were studied at the Gargano Promontory on the Adriatic Coast (in the Apulian foreland) and in the Matese Mountains, about 120 km to the west (within the Apenninic fold-and-thrust belt). The fault zones are 200,300 m wide and typically comprise a core surrounded by a damage zone. Within fault cores, fault rocks (gouges and cataclasites) typically occur along master slip planes; in damage zones, secondary slip planes and solution cleavage are the most important planar discontinuities. The protolith carbonates surrounding the fault zone at Gargano show little deformation, but they are fractured in the Matese Mountains as a result of an earlier thrust phase. Cleavage surfaces in the damage zone of the studied faults are interpreted to be fault-propagation structures. Our field data indicate that cleavage-fault intersection lines are parallel to the normals of fault slip-vectors. The angle between a fault plane and the associated cleavage was found to be fairly constant (c. 40") at different scales of observation. Finally, the spacing of the solution cleavage surfaces appeared in general to be regular (with a mean of about 22 mm), although it was found to decrease slightly near a fault plane. These results are intended to provide a basis for predicting the architecture of fault zones in buried carbonate reservoirs using seismic reflection and borehole data. [source]


X-ray diffraction analysis of stacking and twin faults in f.c.c. metals: a revision and allowance for texture and non-uniform fault probabilities

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2000
L. Velterop
A revision is presented of the original description by Warren [X-ray Diffraction, (1969), pp. 275,298. Massachusetts: Addison-Wesley] of the intensity distribution of powder-pattern reflections from f.c.c. metal samples containing stacking and twin faults. The assumptions (in many cases unrealistic) that fault probabilities need to be very small and equal for all fault planes and that the crystallites in the sample have to be randomly oriented have been removed. To elucidate the theory, a number of examples are given, showing how stacking and twin faults change the shape and position of diffraction peaks. It is seen that significant errors may arise from Warren's assumptions, especially in the peak maximum shift. Furthermore, it is explained how to describe powder-pattern reflections from textured specimens and specimens with non-uniform fault probabilities. Finally, it is discussed how stacking- and twin-fault probabilities (and crystallite sizes) can be determined from diffraction line-profile measurements. [source]


Seismic reflection imaging of active offshore faults in the Gulf of Corinth: their seismotectonic significance

BASIN RESEARCH, Issue 4 2002
A. Stefatos
ABSTRACT High resolution seismic reflection surveys over one of the most active and rapidly extending regions in the world, the Gulf of Corinth, have revealed that the gulf is a complex asymmetric graben whose geometry varies significantly along its length. A detailed map of the offshore faults in the gulf shows that a major fault system of nine distinct faults limits the basin to the south. The northern Gulf appears to be undergoing regional subsidence and is affected by an antithetic major fault system consisting of eight faults. All these major faults have been active during the Quaternary. Uplifted coastlines along their footwalls, growth fault patterns and thickening of sediment strata toward the fault planes indicate that some of these offshore faults on both sides of the graben are active up to present. Our data ground-truth recent models and provides actual observations of the distribution of variable deformation rates in the Gulf of Corinth. Furthermore they suggest that the offshore faults should be taken into consideration in explaining the high extension rates and the uplift scenarios of the northern Peloponnesos coast. The observed coastal uplift appears to be the result of the cumulative effect of deformation accommodated by more than one fault and therefore, average uplift rates deduced from raised fossil shorelines, should be treated with caution when used to infer individual fault slip rates. Seismic reflection profiling is a vital tool in assessing seismic hazard and basin-formation in areas of active extension. [source]


Normal Faulting Type Earthquake Activities in the Tibetan Plateau and Its Tectonic Implication

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010
Jiren XU
Abstract: This paper analyzes various earthquake fault types, mechanism solutions, stress field as well as other geophysical data to study the crust movement in the Tibetan plateau and its tectonic implications. The results show that a lot of normal faulting type earthquakes concentrate in the central Tibetan plateau. Many of them are nearly perfect normal fault events. The strikes of the fault planes of the normal faulting earthquakes are almost in the N-S direction based on the analyses of the equal area projection diagrams of fault plane solutions. It implies that the dislocation slip vectors of the normal faulting type events have quite great components in the E-W direction. The extension is probably an eastward extensional motion, mainly a tectonic active regime in the altitudes of the plateau. The tensional stress in the E-W or WNW-ESE direction predominates the earthquake occurrence in the normal event region of the central plateau. A number of thrust fault and strike-slip fault type earthquakes with strong compressive stress nearly in the NNE-SSW direction occurred on the edges of the plateau. The eastward extensional motion in the Tibetan plateau is attributable to the eastward movement of materials in the upper mantle based onseismo-tomographic results. The eastward extensional motion in the Tibetan plateau may be related to the eastward extrusion of hotter mantle materials beneath the east boundary of the plateau. The northward motion of the Tibetan plateau shortened in the N-S direction probably encounters strong obstructions at the western and northern margins. Extensional motions from the relaxation of the topography and/or gravitational collapse in the altitudes of the plateau occur hardly in the N-S direction. The obstruction for the plateau to move eastward is rather weak [source]