Home About us Contact | |||
Fault Length (fault + length)
Selected AbstractsA geometric and kinematic model for double-edge propagating thrusts involving hangingwall and footwall folding.GEOLOGICAL JOURNAL, Issue 5-6 2010An example from the Jaca, Pamplona Basin (Southern Pyrenees) Abstract A new geometric and kinematic model is proposed for a particular type of fault-related folding based on the study of a natural example developed in Palaeogene carbonate rocks from the Jaca,Pamplona Basin (Southern Pyrenees). The example consists of a hangingwall anticline related to a reverse fault with variable displacement and a gentle footwall syncline. A detailed structural analysis of the structure and a cross-section, perpendicular to its axis and parallel to the transport direction, reveals that none of the previous published models of fault-related folds is able to simulate its main characteristics and reproduce its geometry. The main features of the new model are: double-edge propagating fault and folding developed in both the hangingwall and the footwall. A MATLAB-based program was created to calculate structural parameters such as shortening, structural relief and fault slip; obtain graphs of different parameters such as shortening versus slip along the fault, shortening versus fault length, and produce sections across forward models showing the different stages of fold growth. The model presented here gives an acceptable geometrical fit to the studied natural structure and provides a reasonable evolutionary history. In addition, the results obtained using the model are similar to those measured on the cross-section. As a final step the subsurface portion of the natural fold was completed following the constraints imposed by the model. Copyright © 2010 John Wiley & Sons, Ltd. [source] 2001 August earthquake swarm at Shadwan Island, Gulf of Suez, EgyptGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2006Ahmed Badawy SUMMARY The earthquake swarm that struck Shadwan Island at the entrance of the Gulf of Suez in 2001 August included 408 events. Almost all of these events (94 per cent) were microearthquakes and only 6 per cent had small measurable magnitudes (5.0 > ML, 3.0). Most of the earthquakes were weak and followed each other so closely in time that they could not be identified at more distant stations. The fault plane solutions of the strongest events of the swarm show almost identical focal mechanisms, predominately normal faulting with a significant sinistral strike-slip component for nodal planes trending NW,SE. A comparison with the mechanisms of the 1969 and 1972 events which took place 20 km north of the swarm epicentral region shows similarities in faulting type and orientation of nodal planes. The azimuths of T -axes determined from focal mechanisms in this study are oriented in the NNE,SSW direction. This direction is consistent with the present-day stress field derived from borehole breakouts in the southern Gulf of Suez and the last phase of stress field changes in the Late Pleistocene, as well as with recent GPS results. The source parameters of the largest (ML, 3.0) events of the 2001 August Shadwan swarm have been estimated from the P -wave spectra of the Egyptian National Seismograph Network (ENSN). Averaging of the values obtained at different stations shows relatively similar source parameters, including a fault length of 0.65 ,L, 2 km, a seismic moment of 7.1 × 1012,Mo, 3.0 × 1014 N m and a stress drop of 0.4 ,,,, 10 bar. [source] Fault slip controlled by gouge rheology: a model for slow earthquakesGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2004A. Amoruso SUMMARY During 1997 several slow earthquakes have been recorded by a geodetic interferometer located beneath Gran Sasso, central Italy. The strain rise times of the events range from tens to thousands of seconds and strain amplitudes are of the order of 10,9. Amplitudes scale with the square root of the rise time and this suggests a diffusive behaviour of the slip propagation along the fault. In this work, we develop a model in which slip diffusion is the result of the presence of a gouge layer between fault faces, with a viscoplastic rheology. The fluid velocity field in the gouge layer diffuses in the directions of fault length and fault thickness, with different characteristic times. This model reproduces the relation between amplitude and rise time of measured strain signals. Synthetic straingrams, obtained for a horizontally layered, flat Earth and a source located a few kilometres from the instrument, are in agreement with observed signals. [source] Thrust geometries in unconsolidated Quaternary sediments and evolution of the Eupchon Fault, southeast KoreaISLAND ARC, Issue 3 2004Young-Seog Kim Abstract The Korean peninsula is widely regarded as being located at the relatively stable eastern margin of the Asian continent. However, more than 10 Quaternary faults have recently been discovered in and reported from the southeastern part of the Korean Peninsula. One of these, the Eupchon Fault, was discovered during the construction of a primary school, and it is located close to a nuclear power plant. To understand the nature and characteristics of the Quaternary Eupchon Fault, we carried out two trench surveys near the discovery site. The fault system includes one main reverse fault (N20°E/40°SE) with approximately 4 m displacement, and a series of branch faults, cutting unconsolidated Quaternary sediments. Structures in the fault system include synthetic and antithetic faults, hanging-wall anticlines, drag folds, back thrusts, pop-up structures, flat-ramp geometries and duplexes, which are very similar to those seen in thrust systems in consolidated rocks. In the upper part of the fault system, several tip damage zones are observed, indicating that the fault system propagates upward and terminates in the upper part of the section. Pebbles along the main fault plane show a preferred orientation of long axes, indicating the fault trace. The unconformity surface between the Quaternary deposits and the underlying Tertiary andesites or Cretaceous sedimentary rocks is displaced by this fault with a reverse movement sense. The stratigraphic relationship shows normal slip sense at the lower part of the section, indicating that the fault had a normal slip movement and was reversely reactivated during the Quaternary. The inferred length of the Quaternary thrust fault, based on the relationship between fault length and displacement, is 200,2000 m. The current maximum horizontal compressive stress direction in this area is generally east-northeast,west-southwest, which would be expected to produce oblique slip on the Eupchon Fault, with reverse and right-lateral strike-slip components. [source] |