Fault Belt (fault + belt)

Distribution by Scientific Domains


Selected Abstracts


The Ohalo II prehistoric camp (19.5 Ky): New evidence for environmental and tectonic changes at the Sea of Galilee

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 5 2002
Shmuel Belitzky
Combined archaeological data, shore surveys, and aerial photos of submerged sediments in the Sea of Galilee provide new insights into environmental and tectonic events, their dating, and their impact on the Ohalo II prehistoric camp (ca. 19,500 yr B.P.) and its surroundings. The Ohalo II waterlogged campsite contains excellently preserved brush hut remains and other in situ features, all embedded in late Pleistocene lacustrine strata. The findings indicate relatively short occupation of the site, not more than months or several years at a time. The high quality in situ preservation of delicate organic materials, as well as the short occupation period, suggests a quick and gentle burial by fine sediments. The evident fast submergence (water level rise of the Sea of Galilee) could have been the result of climatic fluctuations towards the end of the last glaciation and/or small-scale tectonic subsidence. The site is located on a tectonic block formed in the western fault belt of the Dead Sea Rift. We present new evidence of post-occupational folding of the late Pleistocene strata and recent tilting and faulting. A westward tectonic tilt may have caused the blockage of the old Jordan River outlet after A. D. 1106. Excellent preservation of the fault traces to the east of the site is attributed to the young age of the displacement on the fault. The last displacement apparently post-dates the blockage of the old Jordan River. © 2002 Wiley Periodicals, Inc. [source]


Origin of the Silurian Crude Oils and Reservoir Formation Characteristics in the Tazhong Uplift

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010
YANG Haijun
Abstract: The Silurian stratum in the Tazhong uplift is an important horizon for exploration because it preserves some features of the hydrocarbons produced from multi-stage tectonic evolution. For this reason, the study of the origin of the Silurian oils and their formation characteristics constitutes a major part in revealing the mechanisms for the composite hydrocarbon accumulation zone in the Tazhong area. Geochemical investigations indicate that the physical properties of the Silurian oils in Tazhong vary with belts and blocks, i.e., heavy oils are distributed in the TZ47,15 well-block in the North Slope while normal and light oils in the No. I fault belt and the TZ16 well-block, which means that the oil properties are controlled by structural patterns. Most biomarkers in the Silurian oils are similar to that of the Mid-Upper Ordovician source rocks, suggesting a good genetic relationship. However, the compound specific isotope of n -alkanes in the oils and the chemical components of the hydrocarbons in fluid inclusions indicate that these oils are mixed oils derived from both the Mid-Upper Ordovician and the Cambrian,Lower Ordovician source rocks. Most Silurian oils have a record of secondary alterations like earlier biodegradation, including the occurrence of "UCM" humps in the total ion current (TIC) chromatogram of saturated and aromatic hydrocarbons and 25-norhopane in saturated hydrocarbons of the crude oils, and regular changes in the abundances of light and heavy components from the structural low to the structural high. The fact that the Silurian oils are enriched in chain alkanes, e.g., n -alkanes and 25-norhopane, suggests that they were mixed oils of the earlier degraded oils with the later normal oils. It is suggested that the Silurian oils experienced at least three episodes of petroleum charging according to the composition and distribution as well as the maturity of reservoir crude oils and the oils in fluid inclusions. The migration and accumulation models of these oils in the TZ47,15 well-blocks, the No. I fault belt and the TZ16 well-block are different from but related to each other. The investigation of the origin of the mixed oils and the hydrocarbon migration and accumulation mechanisms in different charging periods is of great significance to petroleum exploration in this area. [source]


Origin of Paleofluids in Dabashan Foreland Thrust Belt: Geochemical Evidence of 13C, 18O and 87Sr/86Sr in Veins and Host Rocks

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010
ZENG Jianhui
Abstract: In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on ,13C, ,18O and 87Sr/86Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the ,13C is generally less than ,5.0,PDB, ,18O less than ,10.0,PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate-derived, with the ,13C generally more than ,2.0,PDB, ,18O less than ,10.0,PDB, Z value more than 120 and 87Sr/86Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the ,13C generally ranging from ,2.0, to ,8.0,PDB, ,18O from ,10.0, to ,18.0, PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the ,13C generally ranging from 0.0, to ,10.0,PDB, ,18O less than ,8.0%cPDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid. [source]


Active Faulting Pattern, Present-day Tectonic Stress Field and Block Kinematics in the East Tibetan Plateau

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2009
Yueqiao ZHANG
Abstract: This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10,14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2,4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7,9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and rheologically layered. The upper crust seems to be decoupled from the lower crust through a décollement zone at a depth of 15,20 km, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this décollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed. [source]


Relationship between Crustal 3D Density Structure and the Earthquakes in the Longmenshan Range and Adjacent Areas

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2009
Jisheng ZHANG
Abstract: This paper presents the 3D density structure of crust in the Longmenshan range and adjacent areas, with constraints from seismic and density data. The density structure of crust shows that the immense boundary plane of density distribution in relation to the Longmeshan fault belt is extended downward to ,80 km deep. This density boundary plane dips towards the northwest and crosses the Moho. With the proximity to the Longmenshan fault belt, it has a larger magnitude of undulation in the upper and middle crust levels. Density changes abruptly across Longmeshan fault belt. Seismic data show that most of the earthquakes in the Longmenshan area after the 2008 Ms8.0 Wenchuan Earthquake occurred within the upper to middle crust. These earthquakes are clearly distributed in the uplifted region of the basement. A few of them occurs in the transitional zone between the uplifted and subsided areas. But most of the earthquakes distributes in transitional zone from subsided to uplifted areas in the upper and middle crust where relatively large density changes occurr The 3D density structure of crust in the Longmenshan and adjacent areas can thus help us to understand the pattern of overthrusting from the standpoint of deep crust and where the earthquakes occurred. [source]


Large-scale Tazhong Ordovician Reef-flat Oil-Gas Field in the Tarim Basin of China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2009
Xinyuan ZHOU
Abstract: The Tazhong reef-flat oil-gas field is the first large-scale Ordovician organic reef type oil-gas field found in China. Its organic reefs were developed in the early Late Ordovician Lianglitag Formation, and are the first large reefs of the coral-stromatoporoid hermatypic community found in China. The organic reefs and platform-margin grain banks constitute a reef-flat complex, mainly consisting of biolithites and grainstones. The biolithites can be classified into the framestone, bafflestone, bindstone etc. The main body of the complex lies around the wells from Tazhong-24 to Tazhong-82, trending northwest, with the thickness from 100 to 300 m, length about 220 km and width 5,10 km. It is a reef-flat lithologic hydrocarbon reservoir, with a very complex hydrocarbon distribution: being a gas condensate reservoir as a whole with local oil reservoirs. The hydrocarbon distribution is controlled by the reef complex, generally located in the upper 100,200 m part of the complex, and largely in a banded shape along the complex. On the profile, the reservoir shows a stratified feature, with an altitude difference of almost 2200 m from southeast to northwest. The petroleum accumulation is controlled by karst reservoir beds and the northeast strike-slip fault belt. The total geologic reserves had reached 297.667 Mt by 2007. [source]


Surface Rupture and Co-seismic Displacement Produced by the Ms 8.0 Wenchuan Earthquake of May 12th, 2008, Sichuan, China: Eastwards Growth of the Qinghai-Tibet Plateau

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2008
DONG Shuwen
Abstract An earthquake of Ms 8 struck Wenchuan County, western Sichuan, China, on May 12th, 2008 and resulted in long surface ruptures (>300 km). The first-hand observations about the surface ruptures produced by the earthquake in the worst-hit areas of Yingxiu, Beichuan and Qingchuan, ascertained that the causative structure of the earthquake was in the central fault zones of the Longmenshan tectonic belt. Average co-seismic vertical displacements along the individual fault of the Yingxiu-Beichuan rupture zone reach 2.5-4 m and the cumulative vertical displacements across the central and frontal Longmenshan fault belt is about 5,6 m. The surface rupture strength was reduced from north of Beichuan to Qingchuan County and shows 2,3 m dextral strike-slip component. The Wenchuan thrust-faulting earthquake is a manifestation of eastward growth of the Tibetan Plateau under the action of continuous convergence of the Indian and Eurasian continents. [source]


Basin- and Mountain-Building Dynamic Model of "Ramping-Detachment-Compression" in the West Kunlun-Southern Tarim Basin Margin

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2008
CUI Junwen
Abstract: Analysis of the deformation structures in the West Kunlun-Tarim basin-range junction belt indicates that sediments in the southwestern Tarim depression were mainly derived from the West Kunlun Mountains and that with time the region of sedimentation extended progressively toward the north. Three north-underthrusting (subducting), steep-dipping, high-velocity zones (bodies) are recognized at depths, which correspond to the central West Kunlun junction belt (bounded by the Küda-Kaxtax fault on the north and Bulungkol-Kangxiwar fault on the south), Quanshuigou fault belt (whose eastward extension is the Jinshajiang fault belt) and Bangong Co-Nujiang fault belt. The geodynamic process of the basin-range junction belt generally proceeded as follows: centering around the magma source region (which largely corresponds with the Karatag terrane at the surface), the deep-seated material flowed and extended from below upward and to all sides, resulting in strong deformation (mainly extension) in the overlying lithosphere and even the upper mantle, appearance of extensional stress perpendicular to the strike of the orogenic belt in the thermal uplift region or at the top of the mantle diapir and localized thickening of the sedimentary cover (thermal subsidence in the upper crust). Three stages of the basin- and mountain-forming processes in the West Kunlun-southern Tarim basin margin may be summarized: (1) the stage of Late Jurassic-Early Cretaceous ramping-rapid uplift and rapid subsidence, when north-directed thrust propagation and south-directed intracontinental subduction, was the dominant mechanism for basin- and mountain-building processes; (2) the stage of Late Cretaceous-Paleogene deep-level detachment-slow uplift and homogeneous subsidence, when the dominant mechanism for the basin- and mountain-forming processes was detachment (subhorizontal north-directed deep-level ductile shear) and its resulting lateral propagation of deep material; and (3) the stage of Neogene-present compression-rapid uplift and strong subsidence, when the basin- and mountain-forming processes were simultaneously controlled by north-vergent thrust propagation and compression. The authors summarize the processes as the "ramping-detachment-compression basin- and mountain-forming dynamic model". The basin-range tectonics was initiated in the Late Jurassic, the Miocene-Pliocene were a major transition period for the basin- and mountain-forming mechanism and the terminal early Pleistocene tectonic movement in the main laid a foundation for the basin-and-mountain tectonic framework in the West Kunlun-southern Tarim basin margin. [source]


Origin of Paleofluids in Dabashan Foreland Thrust Belt: Geochemical Evidence of 13C, 18O and 87Sr/86Sr in Veins and Host Rocks

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010
ZENG Jianhui
Abstract: In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on ,13C, ,18O and 87Sr/86Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the ,13C is generally less than ,5.0,PDB, ,18O less than ,10.0,PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate-derived, with the ,13C generally more than ,2.0,PDB, ,18O less than ,10.0,PDB, Z value more than 120 and 87Sr/86Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the ,13C generally ranging from ,2.0, to ,8.0,PDB, ,18O from ,10.0, to ,18.0, PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the ,13C generally ranging from 0.0, to ,10.0,PDB, ,18O less than ,8.0%cPDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid. [source]