Home About us Contact | |||
Fascial Structures (fascial + structure)
Selected AbstractsFetal Anatomy of the Human Carotid Sheath and Structures In and Around ItTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 3 2010Naritomo Miyake Abstract The aim of this study was to find basic rules governing the morphological development of the typical neurovascular sheath. We carried out histological examination of 15 paraffin-embedded mid-term fetuses at 9,25 weeks of gestation (three fetuses each at 9, 12, 15, 20, and 25 weeks). As the result, the vagus nerve showed a high propensity to change its topographical relationship with the common carotid artery (CCA) during 9,20 weeks of gestation: that is, from a primitive ventral course to a final dorsal course. The adventitia of the great arteries, which was distinct from other fascial structures, became evident by 15 weeks. The carotid sheath appeared at and after 20 weeks: it was clearly separated from the prevertebral lamina of the deep cervical fasciae, but fused with the pretracheal lamina covering the strap muscles. Thus the carotid sheath, as well as the topographical relationships of structures within it, seems to become established much later than the prevertebral and pretracheal laminae of the deep cervical fasciae. However, the adventitia of the cervical great arteries consistently becomes evident much earlier than the sheath, and it seems to be regarded as one of the basic components of the fetal deep cervical fasciae. Anat Rec, 293:438,445, 2010. © 2010 Wiley-Liss, Inc. [source] Development of the human hypogastric nerve sheath with special reference to the topohistology between the nerve sheath and other prevertebral fascial structuresCLINICAL ANATOMY, Issue 6 2008Yusuke Kinugasa Abstract Semi-serial sections from the lumbosacral region of nine fetuses (8,25 weeks gestation) were examined to clarify the lumbar prevertebral fascial arrangement. The prevertebral fasciae became evident after 12 weeks of age. After 20 weeks of age, the hypogastric nerve (HGN) was sandwiched by two fascial structures; the ventral fascia which seemed to correspond to the mesorectal fascia, whereas the dorsal fascia corresponded to the presacral fascia. These fasciae or the HGN sheaths extended laterally along the ventral aspects of the great vessels and associated lymph follicles. The ventral fascia is, to some extent, fused with the mesocolon descendens on the left side of the body. Notably, the lateral continuation of these two fasciae also sandwiches the left ureter, but not the right ureter, presumably due to modifications by the left-sided fusion fascia. A hypothetical common sheath for the HGN and ureter (i.e., the ureterohypogastric or vesicohypogastric fascia) might thus be an oversimplification. Before retroperitoneal fixation, the morphology of the peritoneal recess along the mesocolon descendens and mesosigmoid suggested interindividual differences in location, shape, and size. Therefore, in adults the ease of surgical separation of the rectum and left-sided colon from the HGN seems to depend on interindividual differences in the development of the embryonic peritoneal recess. On the caudal side of the second sacral segment, fascial structures were restricted along and around the HGN, pelvic splanchnic nerve, and pelvic plexus. The rectal lateral ligament thus seems to represent a kind of migration fascia formed by mechanical stress. Clin. Anat. 21:558,567, 2008. © 2008 Wiley-Liss, Inc. [source] Deep fascia on the dorsum of the ankle and foot: Extensor retinacula revisitedCLINICAL ANATOMY, Issue 2 2007Marwan F. Abu-Hijleh Abstract This study revisits the anatomy of the deep fascia over the distal leg, ankle, and dorsum of the foot. The arrangement of the deep fascia in these regions was recorded in 14 lower limbs of adult cadavers using photographs and drawings. The fascial layer from all three sites was subsequently removed in toto, and serial thickness measurements were made along its entire length. In addition, fiber disposition was studied under polarized light, and sections were stained to demonstrate collagen. The arrangement of deep fascia is complex. A common and novel finding at all levels is a crisscross, lattice-like arrangement of fibers. There was little evidence of the clearly defined sturdy band of the superior extensor retinaculum (SER) or of the Y-shaped inferior retinaculum (IER) commonly illustrated in topographical anatomy texts. The SER is a complex area with several thickenings commencing about 3 cm proximal to the tip of the lateral malleolus and gradually increasing to reach a maximum of 270 ,m about 5 cm above the malleolus, then gradually returning to original thickness, about 9 cm above the malleolus. Fibers crossing diagonally to each other are a feature of the region. The IER characteristically has two forms: either a cross-shaped band (9 specimens) or a thickened "node" with small extensions radiating toward the malleoli (5 specimens), located about 1,2 cm distal to the lateral malleolus and centred over the common tendon of extensor digitorum where it has maximum thickness (430 ,m). The deep fascia is thickened and firmly attached over both malleoli and to the tarsals and metatarsals along both borders of the foot. In general, the deep fascial structures were thicker in males than those in females. Clin. Anat. 20:186,195, 2007. © 2006 Wiley-Liss, Inc. [source] |