Home About us Contact | |||
Failure Process (failure + process)
Selected AbstractsFatigue crack nucleation and growth in filled natural rubberFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 9 2003W. V. MARS ABSTRACT Rubber components subjected to fluctuating loads often fail due to nucleation and the growth of defects or cracks. The prevention of such failures depends upon an understanding of the mechanics underlying the failure process. This investigation explores the nucleation and growth of cracks in filled natural rubber. Both fatigue macro-crack nucleation as well as fatigue crack growth experiments were conducted using simple tension and planar tension specimens, respectively. Crack nucleation as well as crack growth life prediction analysis approaches were used to correlate the experimental data. Several aspects of the fatigue process, such as failure mode and the effects of R ratio (minimum strain) on fatigue life, are also discussed. It is shown that a small positive R ratio can have a significant beneficial effect on fatigue life and crack growth rate, particularly at low strain range. [source] Carbon Nanotube Fibers: Monitoring a Micromechanical Process in Macroscale Carbon Nanotube Films and Fibers (Adv. Mater.ADVANCED MATERIALS, Issue 5 20095/2009) The evaluation of mechanical properties of carbon nanotube (CNT) fibers is inherently difficult. On p. 603, Sishen Xie and co-workers report that Raman scattering,a generic methodology independent of mechanical measurements,can be used to determine the interbundle strength and microscopic failure process for various CNT macroarchitectures. Raman data are used to predict the moduli of CNT films and fibers, and to illustrate the influences of the twisting geometries on the fibers' mechanical performances. [source] Monitoring a Micromechanical Process in Macroscale Carbon Nanotube Films and FibersADVANCED MATERIALS, Issue 5 2009Wenjun Ma The evaluation of mechanical properties of carbon nanotube (CNT) fibers is inherently difficult. Here, Raman scattering,a generic methodology independent of mechanical measurements,is used to determine the interbundle strength and microscopic failure process for various CNT macroarchitectures. Raman data are used to predict the moduli of CNT films and fibers, and to illustrate the influences of the twisting geometries on the fibers' mechanical performances. [source] H, fuzzy control design of discrete-time nonlinear active fault-tolerant control systemsINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 10 2009Huai-Ning Wu Abstract This paper is concerned with the problem of H, fuzzy controller synthesis for a class of discrete-time nonlinear active fault-tolerant control systems (AFTCSs) in a stochastic setting. The Takagi and Sugeno (T,S) fuzzy model is employed to exactly represent a nonlinear AFTCS. For this AFTCS, two random processes with Markovian transition characteristics are introduced to model the failure process of system components and the fault detection and isolation (FDI) decision process used to reconfigure the control law, respectively. The random behavior of the FDI process is conditioned on the state of the failure process. A non-parallel distributed compensation (non-PDC) scheme is adopted for the design of the fault-tolerant control laws. The resulting closed-loop fuzzy system is the one with two Markovian jump parameters. Based on a stochastic fuzzy Lyapunov function (FLF), sufficient conditions for the stochastic stability and H, disturbance attenuation of the closed-loop fuzzy system are first derived. A linear matrix inequality (LMI) approach to the fuzzy control design is then developed. Moreover, a suboptimal fault-tolerant H, fuzzy controller is given in the sense of minimizing the level of disturbance attenuation. Finally, a simulation example is presented to illustrate the effectiveness of the proposed design method. Copyright © 2008 John Wiley & Sons, Ltd. [source] Integrated production scheduling and preventive maintenance planning for a single machine under a cumulative damage failure processNAVAL RESEARCH LOGISTICS: AN INTERNATIONAL JOURNAL, Issue 6 2007Yarlin Kuo Abstract This paper finds the optimal integrated production schedule and preventive maintenance plan for a single machine exposed under a cumulative damage process, and investigates how the optimal preventive maintenance plan interacts with the optimal production schedule. The goal is to minimize the total tardiness. The optimal policy possesses the following properties: Under arbitrary maintenance plan when jobs have common processing time, and different due dates, the optimal production schedule is to order the jobs by earliest due date first rule; and when jobs have common due date and different processing times, the optimal production schedule is shortest processing time first. The optimal maintenance plan is of control limit type under any arbitrary production schedule when machine is exposed under a cumulative damage failure process. Numerical studies on the optimal maintenance control limit of the maintenance plan indicate that as the number of jobs to be scheduled increases, the effect of jobs due dates on the optimal maintenance control limit diminishes. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007 [source] Robust disturbance attenuation for discrete-time active fault tolerant control systems with uncertaintiesOPTIMAL CONTROL APPLICATIONS AND METHODS, Issue 2 2003Peng Shi Abstract The problems of stochastic stability and stochastic disturbance attenuation for a class of linear discrete-time systems are considered in this paper. The system under study is a state space model possessing two Markovian jump parameters: one is failure process and another is failure detection and isolation scheme. A controller is designed to guarantee the stochastic stability and a disturbance attenuation level. Robustness problems for the above system with norm-bounded parameter uncertainties are also investigated. It is shown that the uncertain system can be robustly stochastically stabilized and have a robust disturbance attenuation level for all admissible perturbations if a set of coupled Riccati inequalities has solutions. A numerical example is given to show the potential of the proposed technique. Copyright © 2003 John Wiley & Sons, Ltd. [source] One fragmentation procedure for brittle material crackingPROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2006S. H. Reese Realistic modeling of 3D fragmentation procedures with minimal incorporation of restrictions to the crack path is still a challenge in modern computational engineering simulations. The presented approach is used to model failure and cracking in concrete structures, applying an explicit finite element integration scheme. Within this model the Strong Discontinuity Approach (SDA) is used to handle the failure process until the material is fully damaged. At stage an adaptive refinement technique is incorporated in ordner to introduce real cracks which are suitable for DEM / FEM coupling or contact formulations. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Local and non-local ductile damage and failure modelling at large deformation with applications to engineeringPROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2003Bob Svendsen Prof. Dr. The numerical analysis of ductile damage and failure in engineering materials is often based on the micromechanical model of Gurson [1]. Numerical studies in the context of the finite-element method demonstrate that, as with other such types of local damage models, the numerical simulation of the initiation and propagation of damage zones is strongly mesh-dependent and thus unreliable. The numerical problems concern the global load-displacement response as well as the onset, size and orientation of damage zones. From a mathematical point of view, this problem is caused by the loss of ellipticity of the set of partial di.erential equations determining the (rate of) deformation field. One possible way to overcome these problems with and shortcomings of the local modelling is the application of so-called non-local damage models. In particular, these are based on the introduction of a gradient type evolution equation of the damage variable regarding the spatial distribution of damage. In this work, we investigate the (material) stability behaviour of local Gurson-based damage modelling and a gradient-extension of this modelling at large deformation in order to be able to model the width and other physical aspects of the localization of the damage and failure process in metallic materials. [source] A study of time-between-events control chart for the monitoring of regularly maintained systemsQUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, Issue 7 2009Michael B. C. Khoo Abstract Owing to usage, environment and aging, the condition of a system deteriorates over time. Regular maintenance is often conducted to restore its condition and to prevent failures from occurring. In this kind of a situation, the process is considered to be stable, thus statistical process control charts can be used to monitor the process. The monitoring can help in making a decision on whether further maintenance is worthwhile or whether the system has deteriorated to a state where regular maintenance is no longer effective. When modeling a deteriorating system, lifetime distributions with increasing failure rate are more appropriate. However, for a regularly maintained system, the failure time distribution can be approximated by the exponential distribution with an average failure rate that depends on the maintenance interval. In this paper, we adopt a modification for a time-between-events control chart, i.e. the exponential chart for monitoring the failure process of a maintained Weibull distributed system. We study the effect of changes on the scale parameter of the Weibull distribution while the shape parameter remains at the same level on the sensitivity of the exponential chart. This paper illustrates an approach of integrating maintenance decision with statistical process monitoring methods. Copyright © 2008 John Wiley & Sons, Ltd. [source] Defining the moment of erosion: the principle of thermal consonance timingEARTH SURFACE PROCESSES AND LANDFORMS, Issue 13 2005D. M. LawlerArticle first published online: 9 DEC 200 Abstract Geomorphological process research demands quantitative information on erosion and deposition event timing and magnitude, in relation to fluctuations in the suspected driving forces. This paper establishes a new measurement principle , thermal consonance timing (TCT) , which delivers clearer, more continuous and quantitative information on erosion and deposition event magnitude, timing and frequency, to assist understanding of the controlling mechanisms. TCT is based on monitoring the switch from characteristically strong temperature gradients in sediment, to weaker gradients in air or water, which reveals the moment of erosion. The paper (1) derives the TCT principle from soil micrometeorological theory; (2) illustrates initial concept operationalization for field and laboratory use; (3) presents experimental data for simple soil erosion simulations; and (4) discusses initial application of TCT and perifluvial micrometeorology principles in the delivery of timing solutions for two bank erosion events on the River Wharfe, UK, in relation to the hydrograph. River bank thermal regimes respond, as soil temperature and energy balance theory predicts, with strong horizontal thermal gradients (often >1 K cm,1 over 6·8 cm). TCT fixed the timing of two erosion events, the first during inundation, the second 19 h after the discharge peak and 13 h after re-emergence from the flow. This provides rare confirmation of delayed bank retreat, quantifies the time-lag involved, and suggests mass failure processes rather than fluid entrainment. Erosion events can be virtually instantaneous, implying ,catastrophic retreat' rather than ,progressive entrainment'. Considerable potential exists to employ TCT approaches for: validating process models in several geomorphological contexts; assisting process identification and improving discrimination of competing hypotheses of process dominance through high-resolution, simultaneous analysis of erosion and deposition events and driving forces; defining shifting erodibility and erosion thresholds; refining dynamic linkages in event-based sediment budget investigations; and deriving closer approximations to ,true' erosion and deposition rates, especially in self-concealing scour-and-fill systems. Copyright © 2005 John Wiley & Sons, Ltd. [source] Collagen architecture and failure processes in bovine patellar cartilageJOURNAL OF ANATOMY, Issue 4 2001JACK L. LEWIS Cartilage fails by fibrillation and wearing away. This study was designed to identify the microscopic failure processes in the collagen network of bovine cartilage using scanning electron microscopy. Cartilage samples from fibrillated cartilage from the bovine patella were removed from the bone, fixed, digested to remove proteoglycans, freeze-fractured, and processed for SEM. The architecture of the collagen network in the normal cartilage was first defined, and then the failure processes were identified by examining sites of fibrillation and at crack tips. The bovine patellar cartilage was organised with a superficial layer composed of 3,5 lamina, attached to a sub-superficial tissue by angled bridging fibrils. Collagen in the sub-superficial tissue was organised in lamina oriented in the radial direction up to the transition zone. Failure of the system occurred by cracks forming in superficial layer and lamina, creating flaps of lamina that rolled up into the larger ,fronds'. Larger cracks not following the laminar planes occurred in the transition, mid, and deep zones. Failure at the crack tips in the sub-superficial tissue appeared to be by peeling of collagen fibrils, as opposed to breaking of collagen fibrils, suggesting a ,glue' bonding the collagen fibrils in a parallel fashion. Cracks propagated by breaking these bonds. This bond could be a site of disease action, since weakening of the bond would accelerate crack propagation. [source] |