Home About us Contact | |||
Fading Environment (fading + environment)
Selected AbstractsComparison of coded orthogonal frequency division multiplexing and multicarrier code division multiple access systems for power line communicationsINTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 9 2004P. L. Katsis Abstract Orthogonal frequency division multiplexing (OFDM) and multicarrier code division multiple access (MC-CDMA) systems are comparatively evaluated for power line communications (PLC) in a frequency-selective fading environment with additive coloured Gaussian noise which is used to model the actual in-home power line channel. OFDM serves as a benchmark in order to measure the performance of various MC-CDMA systems, since multicarrier modulation systems are considered the best candidate for this kind of channel. Both single-user and multi-user cases are taken into account, making use of the appropriate combiner schemes to take full advantage of each case. System efficiency is enhanced by the application of different coding techniques, a fact which shows that powerful coding can make the difference under such a hostile medium. The impact of block interleaving is investigated, while the simulation examines how different modulation schemes fair under the imposed channel conditions as well. The performance of the system is assessed by the commonly used bit error rate vs signal-to-noise ratio diagrams and there is also a comparison regarding throughput efficiency among all the tested systems. As stated in Section 4, a promising PLC application is attained. Copyright © 2004 John Wiley & Sons, Ltd. [source] Blind equalization of quadrature partial response-trellis coded modulated signals in Rician fading,INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, Issue 2 2001Hakan A. Cirpan Abstract In this paper, a blind maximum-likelihood channel estimation algorithm is developed for quadrature partial response-trellis coded modulated (QPR-TCM) signals propagating through a Rician fading environment. A hidden Markov model (HMM) formulation of the problem is introduced and the Baum,Welch parameter estimation algorithm is modified to provide a computationally efficient solution to the resulting optimization problem. Performance analysis of the proposed method is carried out through the evaluation of bit-error probability upper bound for Rician fading channels. Also, some illustrative simulations are presented. Copyright © 2001 John Wiley & Sons, Ltd. [source] Kalman filter-based channel estimation and ICI suppression for high-mobility OFDM systemsINTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 10 2008Prerana Gupta Abstract The use of orthogonal frequency division multiplexing (OFDM) in frequency-selective fading environments has been well explored. However, OFDM is more prone to time-selective fading compared with single-carrier systems. Rapid time variations destroy the subcarrier orthogonality and introduce inter-carrier interference (ICI). Besides this, obtaining reliable channel estimates for receiver equalization is a non-trivial task in rapidly fading systems. Our work addresses the problem of channel estimation and ICI suppression by viewing the system as a state-space model. The Kalman filter is employed to estimate the channel; this is followed by a time-domain ICI mitigation filter that maximizes the signal-to-interference plus noise ratio (SINR) at the receiver. This method is seen to provide good estimation performance apart from significant SINR gain with low training overhead. Suitable bounds on the performance of the system are described; bit error rate (BER) performance over a time-invariant Rayleigh fading channel serves as the lower bound, whereas BER performance over a doubly selective system with ICI as the dominant impairment provides the upper bound. Copyright © 2008 John Wiley & Sons, Ltd. [source] Performance of multilevel-turbo codes with blind/non-blind equalization over WSSUS multipath channelsINTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 3 2006Osman N. Ucan Abstract In this paper, in order to improve error performance, we introduce a new type of turbo codes, called ,multilevel-turbo codes (ML-TC)' and we evaluate their performance over wide-sense stationary uncorrelated scattering (WSSUS) multipath channels. The basic idea of ML-TC scheme is to partition a signal set into several levels and to encode each level separately by a proper component of the turbo encoder. In the considered structure, the parallel input data sequences are encoded by our multilevel scheme and mapped to any modulation type such as MPSK, MQAM, etc. Since WSSUS channels are very severe fading environments, it is needed to pass the received noisy signals through non-blind or blind equalizers before turbo decoders. In ML-TC schemes, noisy WSSUS corrupted signal sequence is first processed in equalizer block, then fed into the first level of turbo decoder and the first sequence is estimated from this first Turbo decoder. Subsequently, the other following input sequences of the frame are computed by using the estimated input bit streams of previous levels. Here, as a ML-TC example, 4PSK 2 level-turbo codes (2L-TC) is chosen and its error performance is evaluated in WSSUS channel modelled by COST 207 (Cooperation in the field of Science & Technology, Project #207). It is shown that 2L-TC signals with equalizer blocks exhibit considerable performance gains even at lower SNR values compared to 8PSK-turbo trellis coded modulation (TTCM). The simulation results of the proposed scheme have up to 5.5 dB coding gain compared to 8PSK-TTCM for all cases. It is interesting that after a constant SNR value, 2L-TC with blind equalizer has better error performance than non-blind filtered schemes. We conclude that our proposed scheme has promising results compared to classical schemes for all SNR values in WSSUS channels. Copyright © 2005 John Wiley & Sons, Ltd. [source] |