Home About us Contact | |||
F2 Rats (f2 + rat)
Selected AbstractsPleiotropic effect of a locus on chromosome 4 influencing alcohol drinking and emotional reactivity in ratsGENES, BRAIN AND BEHAVIOR, Issue 3 2003E. Terenina-Rigaldie A QTL search in a segregating F2 intercross between HEP (High-Ethanol Preferring line) and wistar-kyoto (WKY, a low-alcohol consuming strain) rats identified a locus on chromosome 4 linked to the consumption of a 5% alcohol solution offered as a free choice with water (Terenina-Rigaldie et al. submitted). In order to confirm and analyse the influence of this locus, F2 rats were selected according to their genotype at the markers flanking the QTL and bred in order to obtain two groups of rats homozygous HEP/HEP (,HIGH' line) or WKY/WKY (,LOW' line) at the QTL, the rest of the genome being randomly inherited from one or the other founder strain. These two groups of animals displayed large differences in emotional reactivity (open field, elevated-plus maze), sensitivity to taste reinforcers (saccharin, quinine) and alcohol consumption (either forced or as a free choice with water). These results confirm the influence of this locus on alcohol intake and emotional reactivity traits, and suggest a pleiotropic effect of the gene(s) involved. Current research aims at the identification of this (these) gene(s). [source] Gender-specific polygenic control of ethylnitrosourea-induced oncogenesis in the rat peripheral nervous systemINTERNATIONAL JOURNAL OF CANCER, Issue 1 2006Bernd U. Koelsch Abstract The inbred BD rat strains constitute a model system for analysis of the genetic basis of susceptibility or resistance to the development of neural tumors, as they exhibit distinct strain-specific differences regarding the sensitivity to tumor induction by the alkylating carcinogen N -ethyl- N -nitrosourea (EtNU). Among the different BD strains, BDIX and BDIV rats, respectively, are either highly susceptible or entirely resistant to the development of EtNU-induced malignant schwannomas of the peripheral nervous system (PNS), predominantly of the trigeminal nerves. We have previously mapped one locus associated with susceptibility/resistance to schwannoma induction to the telomeric third of chromosome 10 (Mss1) in segregating (BDIX × BDIV) crosses. We report on the genetic mapping of 6 further loci controlling tumor incidence or survival time on chromosomes 1 (Mss2), 3 (Mss3), 6 (Mss4), 13 (Mss5) and 15 (Mss6) as well as on chromosome 10 (Mss7) close to the centromere. Interestingly, most of these loci mediate gender-specific effects of variable strength ranging from minor influences on tumor development to complete tumor resistance. The gender specificity is reflected by the fact that male (BDIX × BDIV) F2 rats exhibit a 2-fold higher incidence of EtNU-induced schwannomas than females as well as a shorter survival time. A number of human nervous system tumors too arise with a marked gender bias. Genes mediating gender-specific predisposition of developing malignant schwannomas in the rat may be relevant for the human individual risk of developing nervous system tumors. © 2005 Wiley-Liss, Inc. [source] Genetic Regulation of Bone Traits Is Influenced by Sex and Reciprocal Cross in F2 Progeny From GK and F344 Rats,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2009Sofia Lagerholm Abstract A genome-wide linkage analysis to identify quantitative trait loci (QTLs) for bone phenotypes was performed in an F2 intercross of inbred spontaneously type 2 diabetic GK and normoglycemic F344 rats (108 males and 98 females). The aim of the study was to locate genome regions with candidate genes affecting trabecular and cortical bone and to investigate the effects of sex and reciprocal cross. pQCT was used to determine tibial bone phenotypes in the F2 rats, comprising reciprocal crosses with divergent mitochondrial (mt) DNA. Sex and reciprocal cross-separated QTL analyses were performed followed by assessment of specific interactions. Four genome-wide significant QTLs linked to either cortical vBMD, tibia length, body length, or metaphyseal area were identified in males on chromosomes (chr) 1, 8, and 15. In females, three significant QTLs linked to cortical BMC or metaphyseal total vBMD were identified on chr 1 and 2. Several additional suggestive loci for trabecular and cortical traits were detected in both males and females. Four female-specific QTLs on chr 2, 3, 5, and 10 and four reciprocal cross-specific QTLs on chr 1, 10, and 18 were identified, suggesting that both sex and mt genotype influence the expression of bone phenotypes. [source] Whole-Genome Scan for Linkage to Bone Strength and Structure in Inbred Fischer 344 and Lewis Rats,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2005Imranul Alam Abstract A genome-wide genetic linkage analysis identified several chromosomal regions influencing bone strength and structure in F2 progeny of Fischer 344 x Lewis inbred rats. Introduction: Inbred Fischer 344 (F344) and Lewis (LEW) rats are similar in body size, but the F344 rats have significantly lower BMD and biomechanical strength of the femur and spine compared with LEW rats. The goal of this study was to identify quantitative trait loci (QTL) linked to bone strength and structure in adult female F2 rats from F344 and LEW progenitors. Materials and Methods: The 595 F2 progeny from F344 x LEW rats were phenotyped for measures of bone strength (ultimate force {Fu}; energy to break {U}; stiffness {S}) of the femur and lumbar vertebra and structure (femur midshaft polar moment of inertia {Ip}; femur midshaft cortical area; vertebral area). A genome-wide scan was completed in the F2 rats using 118 microsatellite markers at an average interval of 20 cM. Multipoint quantitative linkage analysis was performed to identify chromosomal regions that harbor QTL for bone strength and structure phenotypes. Results: Evidence of linkage for femur and lumbar strength was observed on chromosomes (Chrs) 1, 2, 5, 10, and 19. Significant linkage for femoral structure was detected on Chrs 2, 4, 5, 7, and 15. QTLs affecting femoral strength on Chrs 2 and 5 were also found to influence femur structure. Unique QTLs on Chrs 1, 10, and 19 were found that contributed to variability in bone strength but had no significant effect on structure. Also, unique QTLs were observed on Chrs 4, 7, and 15 that affected only bone structure without any effect on biomechanics. Conclusion: We showed multiple genetic loci influencing bone strength and structure in F344 x LEW F2 rats. Some of these loci are homologous to mouse and human chromosomes previously linked to related bone phenotypes. [source] |