F2 Generation (f2 + generation)

Distribution by Scientific Domains


Selected Abstracts


Evidence that the keratinocyte colony number is genetically controlled

EXPERIMENTAL DERMATOLOGY, Issue 6 2002
Natalia V. Popova
Abstract: We tested five inbred strains and two outbred stocks of female mice in a quantitative assay for clonogenic keratinocytes from the cutaneous epithelium. We found three significantly different subsets of colony counts such that: C57BL/6 , C3H = DBA/2 = SENCAR = BALB/c > FVB = CD,1 in culture conditions optimized for CD,1 0. C57BL/6 and BALB/c, two inbred parental strains, were chosen for further analysis. The F1 generation of these two parental strains had an intermediate number of colonies. The keratinocyte colony number from the two backcross generations was significantly different, while the colony number in the F2 generation was intermediate between the two backcrosses. We conclude that the number of keratinocyte colonies represents a new genetically definable quantitative trait. Analysis suggests that this trait is multigenic where the genes have an additive but not necessarily equal effect. We have therefore laid the foundation for identifying these stem cell regulatory genes, which may provide a new perspective on the mechanism of carcinogenesis and a new target for gene therapy. [source]


Linkage and QTL mapping for Sus scrofa chromosome 1

JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 2003
P. Beeckmann
Summary Linkage maps of Sus scrofa chromosome 1 (SSC1) have been produced using 10 markers in three different F2 families based on crosses of Meishan (M), Pietrain (P) and Wild Boar (W). The maps were similar for the different families and show higher paternal recombination, especially in the interval SW2130,SW803. Quantitative trait loci (QTLs) affecting body conformation, carcass composition, fat deposition and numbers of teats were identified in all three families. Major QTLs were mapped in chromosomal intervals centred at approximately 60, 120 and 170 cM. The QTLs explain up to 8.4% of phenotypic variance in the F2 generation. Pietrain QTL alleles were superior in comparison with Wild Boar and Meishan alleles for most of the trait values. Meishan alleles were associated with highest fat deposition. Additive gene effects were generally larger than dominance effects. QTL profiles on SSC1 differed between families, with the W × P family being most distinct. Zusammenfassung Kopplungskarten für Chromosom 1 (SSC1), die durch die Analyse von 10 Markern erstellt wurden, stimmten in drei untersuchten F2 -Familien (basierend auf Kreuzungen mit Meishan (M), Pietrain (P) und Wildschwein (W)) wie auch mit den bisher publizierten Karten überein. Die geschlechtsspezifischen Karten zeigten eine höhere Frequenz der Rekombinationen in der paternalen Meiose als in der maternalen, besonders im Intervall SW2130 bis SW803. Auf SSC1 konnten bedeutsame QTL-Effekte mit Wirkung auf Wachstum, Schlachtkörperzusammensetzung und Fettansatz sowie die Zitzenzahl in allen drei Familien kartiert werden, insbesondere in den Regionen um 60, 120 und 170 cM. Sie erklärten bis zu 8,4% der phänotypischen Varianz in der F2 -Generation. Pietrain-Allele zeigten positive Auswirkungen auf die meisten Fleischleistungsmerkmale. Meishan-Allele waren mit einer stärkeren Verfettung assoziiert. Es wurden Unterschiede zwischen den QTL-Profilen in den Familien beobachtet, wobei die Familie W × P besonders stark von den QTL-Profilen in den beiden anderen Familien abwich. [source]


Localization of the Gene Causing the Osteopetrotic Phenotype in the Incisors Absent (Ia) Rat on Chromosome 10q32.1,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2004
Liesbeth van Wesenbeeck
Abstract The incisors absent rat is an osteopetrotic animal model. Segregation analysis in 37 affected animals from an outcross enabled us to assign the disease causing gene to a 4.7-cM interval on rat chromosome 10q32.1. Further analysis of the genes mapped in this region will provide more insight into the underlying pathogenesis. Introduction: Many of the insights into the factors that regulate the differentiation and activation of osteoclasts are gained from different spontaneous and genetically induced osteopetrotic animal models. The osteopetrotic incisors absent (ia) rat exhibits a generalized skeletal sclerosis and a delay of tooth eruption. Although the ia rat has well been studied phenotypically, the genetic defect still remains unknown. Material and Methods: To map the ia locus, we outcrossed the inbred ia strain with the inbred strain Brown Norway. Intercrossing F1 animals produced the F2 generation. Thirty-one mutant F2 animals and six mutant F4 animals were available for segregation analysis. Results: Segregation analysis enabled us to assign the disease causing gene to rat chromosome 10q32.1. Homozygosity for the ia allele was obtained for two of the markers analyzed (D10Rat18 and D10Rat84). Key recombinations delineate a candidate region of 4.7 cM flanked by the markers D10Rat99 and D10Rat17. Conclusion: We have delineated a 4.7-cM region on rat chromosome 10q32.1 in which the gene responsible for the osteopetrotic phenotype of the ia rat is located. Although the sequence of this chromosomal region is not complete, over 140 known or putative genes have already been assigned to this region. Among these, several candidate genes with a putative role in osteoclast functioning can be identified. However, at this point, it cannot be excluded that one of the genes with a currently unknown function is involved in the pathogenesis of the ia rat. Further analysis of the genes mapped in this region will provide us more insight into the pathogenesis of this osteopetrotic animal model. [source]


Genetic and hormonal control of melanization in reddish,brown and albino mutants in the desert locust Schistocerca gregaria

PHYSIOLOGICAL ENTOMOLOGY, Issue 1 2010
KOUTARO MAENO
The genetic and hormonal control of body colouration is investigated using two recessive genetic mutant strains, the reddish,brown (RB) mutant and an albino mutant, as well as a normal (pigmented) strain of the desert locust Schistocerca gregaria. The colour patterns of the RB nymphs are similar to those of a normal strain, although the intensity of the melanization is weaker in the former. Reciprocal crosses between the RB and albino mutants produce only normal phenotypes in the F1 generation. In the F2 generation, the normal, RB and albino phenotypes appear in a ratio of 9 : 3 : 4, indicating that two Mendelian units might determine the appearance of dark body colour and the intensity of melanization, respectively. In other words, at least two steps of regulation might be involved in the expression of body colour. Injections of [His7]-corazonin, a neuropeptide inducing dark colour in this locust, fail to induce dark colour in albino nymphs but show a dose-dependent darkening in RB nymphs in the range, 10 pmol to 1 nmol. Some RB nymphs become indistinguishable from normal individuals after injection of the peptide. Implantation of corpora cardiaca (CC) taken from RB mutants into other RB individuals induces darkening in the latter and CC from RB, albino and normal strains have similar dark colour-inducing activity when implanted into albino Locusta migratoria. These results suggest the possibility that the RB mutant gene regulates the intensity of melanization, possibly through controlling the pathway of pigment biosynthesis associated with [His7]-corazonin. [source]


A Cre::FLP fusion protein recombines FRT or loxP sites in transgenic maize plants,

PLANT BIOTECHNOLOGY JOURNAL, Issue 8 2008
Vesna Djukanovic
Summary The coding sequences of Cre (site-specific recombinase from bacteriophage P1) and FLP (yeast 2-µm plasmid site-specific recombinase) were fused in frame to produce a novel, dual-function, site-specific recombinase gene. Transgenic maize plants containing the Cre::FLP fusion expression vector were crossed to transgenic plants containing either the loxP or FRT excision substrate. Complete and precise excisions of chromosomal fragments flanked by the respective target sites were observed in the F1 and F2 progeny plants. The episomal DNA recombination products were frequently lost. Non-recombined FRT substrates found in the F1 plants were recovered in the F2 generation after the Cre::FLP gene segregated out. They produced the recombination products in the F3 generation when crossed back to the FLP-expressing plants. These observations may indicate that the efficiency of site-specific recombination is affected by the plant developmental stage, with site-specific recombination being more prevalent in developing embryos. The Cre::FLP fusion protein was also tested for excisions catalysed by Cre. Excisions were identified in the F1 plants and verified in the F2 plants by polymerase chain reaction and Southern blotting. Both components of the fusion protein (FLP and Cre) were functional and acted with similar efficiency. The crossing strategy proved to be suitable for the genetic engineering of maize using the FLP or Cre site-specific recombination system. [source]


Development of SCAR markers for identification of stem rust resistance gene Sr31 in the homozygous or heterozygous condition in bread wheat

PLANT BREEDING, Issue 6 2006
B. K. Das
Abstract The stem rust resistance gene Sr31, transferred from rye (Secale cereale) into wheat (Triticum aestivum L.) imparts resistance to all the virulent pathotypes of stem rust (Puccinia graminis f. sp. tritici) found in India. Wheat genotypes including carriers and non-carriers of the Sr31 gene were analysed using arbitrary primed polymerase chain reaction (AP-PCR). AP-PCR markers viz. SS30.2580(H) associated with the Sr31 gene and SS26.11100 associated with the allele for susceptibility were identified. Linkage between the markers and phenotypes was confirmed by analysing an F2 population obtained from a cross between a resistant and a susceptible genotype. The markers were tightly linked to the respective alleles. Both the AP-PCR markers were converted into sequence characterized amplified region (SCAR) markers, viz. SCSS30.2576 and SCSS26.11100 respectively. The markers were validated in two more segregating populations and 49 wheat genotypes. Using both markers it was possible to distinguish the homozygous from the heterozygous carriers of the Sr31 gene in the F2 generation. The markers developed in this study can be used for pyramiding of the Sr31 gene with other rust resistance genes and in marker-assisted selection. [source]


A genetic linkage map of Vigna vexillata

PLANT BREEDING, Issue 4 2005
E. A. Ogundiwin
Abstract Vigna vexillata is a wild cross-incompatible relative of cowpea. It is highly resistant to several diseases and pests plaguing cowpea. A linkage map was developed for V. vexillata comprising 120 markers, including 70 random amplified polymorphic DNAs, 47 amplified fragment length polymorphisms, one simple sequence repeat and two morphological traits namely, the cowpea mottle carmovirus resistance locus (CPMo V) and leaf shape (La), utilizing an F2 generation of the intra-specific cross Tvnu 1443'× Tvnu 73,. The genetic map comprised 14 linkage groups spanning 1564.1 cM of the genome. Thirty-nine quantitative trait loci (QTLs) associated with nine traits were detected on the linkage map, explaining between 15.62 and 66.58% of their phenotypic variation. Seven chromosomal intervals contained QTLs with effects on multiple traits. [source]


Cytogenetics of Brassica juncea×Brassica rapa hybrids and patterns of variation in the hybrid derivatives

PLANT BREEDING, Issue 4 2002
B. R. Choudhary
Abstract Interspecific hybridization is an important tool to elucidate intergenomic relationships, transfer characters across species and develop synthetic amphidiploids, and it has been widely applied for improving Brassicas. The objective of the present study was to create genetic variability in Brassica through interspecific hybridization. Crosses between Brassica juncea (AABB, 2n= 36), and Brassica rapa (AA, 2n = 20) vars toria, yellow sarson, and brown sarson were attempted, and the hybrid derivatives were advanced to the F4 generation. Hybrids were obtained from the crosses B. juncea× toria and B. juncea× yellow sarson. The F1 plants were vigorous and intermediate to the parents in many morphological traits. The meiotic study of AAB hybrids showed 10 II + 8 I in the majority (71.8%) of cells analysed. A maximum of 12 and a minimum of seven bivalents were also observed in a few cells. The occurrence of multivalent associations (trivalents to pentavalents) at diakinesis/metaphase I and a bridge-fragment configuration at anaphase I were attributed to homoeology between A and B genomes. A high percentage of plants resembling B. juncea was observed in the F2 generation. Transgressive segregation in both directions was found for plant height, primary branches, main raceme length, siliquae on main raceme, siliqua intensity, seeds per siliqua and seed yield. There were significant differences for the 14 characters in the F4 derivatives. Moderate to high estimates of phenotypic and genotypic coefficients of variation, broad-sense heritability, and expected genetic advance were found for seed yield, 1000-seed weight, siliquae per plant, seeds per siliqua and days to flowering. Intergenomic recombination, reflected as wide variation in the hybrid progenies, permitted the selection of some useful derivatives. [source]


Association of the melanocortin 4 receptor with feed intake and daily gain in F2 Mangalitsa × Piétrain pigs

ANIMAL GENETICS, Issue 3 2006
K. Meidtner
Summary The melanocortin 4 receptor (MC4R) is a key factor in the regulation of energy balance and body weight. Hence it is a candidate for feed intake and energy homeostasis-related traits. Studies in humans and swine have revealed several sequence variants in the gene that are associated with some of these traits. In pigs the coding non-synonymous missense variant Asp298Asn in MC4R has been associated with feed intake, fatness and growth. Here we confirm the association of this Piétrain-derived polymorphism with feed intake and daily gain in the F2 generation of a Mangalitsa × Piétrain cross. In one Piétrain founder animal, we detected an additional non-synonymous missense variant Arg236His. Thus, the MC4R gene could be a useful marker for increased growth in the relatively slow-growing Piétrain breed. [source]


Mating compatibility, life-history traits, and RAPD-PCR variation in Bemisia tabaci associated with the cassava mosaic disease pandemic in East Africa

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2001
M.N. Maruthi
Abstract The pandemic of a severe form of cassava mosaic virus disease (CMVD) in East Africa is associated with abnormally high numbers of its whitefly vector, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). To determine whether a novel B. tabaci biotype was associated with the CMVD pandemic, reproductive compatibility, fecundity, nymphal development, and random amplified polymorphic DNA (RAPD) variability were examined in, and between, B. tabaci colonies collected from within the CMVD pandemic and non-pandemic zone in Uganda. In a series of reciprocal crosses carried out over two generations among the six CMVD pandemic and four non-pandemic zone cassava B. tabaci colonies, there was no evidence of mating incompatibility. All the crosses produced both female and male progeny in the F1 and F2 generations, which in a haplo-diploid species such as B. tabaci indicates successful mating. There also were no significant differences between the sex ratios for the pooled data of experimental crosses, between individuals from two different colonies and control crosses between individuals from the same colony. Only one instance of mating incompatibility occurred in a control cross between cassava B. tabaci from Uganda and cotton B. tabaci from India. Measures of fecundity of the pandemic and non-pandemic zone B. tabaci on four cassava varieties showed no significant differences in their fecundity, nymphal development or numbers surviving to adult eclosion. Cluster analysis of 26 RAPD bands using six 10-mer primers was concordant with the mating results, grouping the pandemic and non-pandemic zone colonies into a single large group, also including a B. tabaci colony collected from cassava in Tanzania. These results suggest that it is unlikely that the severe CMVD pandemic in East Africa is associated with a novel and reproductively isolated B. tabaci biotype. [source]


Exposure of three generations of the estuarine sheepshead minnow (Cyprinodon variegatus) to the androgen, 17,-trenbolone: Effects on survival, development, and reproduction

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2010
Geraldine M. Cripe
Abstract Estimating long-term effects of endocrine-disrupting chemicals on a species is important to assessing the overall risk to the populations. The present study reports the results of a 42-week exposure of estuarine sheepshead minnows (Cyprinodon variegatus) to the androgen, 17,-trenbolone (Tb) conducted to determine if partial-(F0) or single-generation (F1) fish exposures identify multigenerational (F0,F3) effects of androgens on fish. Adult F0 fish were exposed to 0.007, 0.027, 0.13, 0.87,and 4.1,µg Tb/L, the F1 generation to ,0.87,µg Tb/L, the F2 fish to ,0.13,µg Tb/L, and the F3 fish to ,0.027,µg Tb/L. The highest concentrations with reproducing populations at the end of the F0, F1, and F2 generations were 4.1, 0.87, and 0.027,µg Tb/L, respectively. Reproduction in the F0, F1, and F2 generations was significantly reduced at 0.87, 0.027, and 0.027,µg Tb/L, respectively. Fish were significantly masculinized in the F1 generation exposed to 0.13 µg Tb/L or greater. Female plasma vitellogenin was significantly reduced in F0 fish exposed to ,0.87,µg Tb/L. Gonadosomatic indices of the F0 and F1 generations were significantly increased at 0.87 and 0.13 µg Tb/L in the F0 and F1 generation, respectively, and were accompanied by ovarian histological changes. Reproduction was the most consistently sensitive measure of androgen effects and, after a life-cycle exposure, the daily reproductive rate predicted concentrations affecting successive generations. The present study provides evidence that a multiple generation exposure of fish to some endocrine-disrupting chemicals can result in developmental and reproductive changes that have a much greater impact on the success of a species than was indicated from shorter term exposures. Environ. Toxicol. Chem. 2010;29:2079,2087. © 2010 SETAC [source]


Genetic analysis of seedling resistance to Stagonospora nodorum blotch in selected tetraploid and hexaploid wheat genotypes

PLANT BREEDING, Issue 2 2009
P. K. Singh
Abstract Stagonospora nodorum blotch (SNB), caused by Phaeosphaeria nodorum, is a major component of the leaf-spotting disease complex of wheat (Triticum aestivum L.) in the northern Great Plains of North America. This study was conducted, under controlled environmental conditions, to determine the inheritance of resistance to SNB in a diverse set of hexaploid and tetraploid wheat genotypes and to decipher the genic/allelic relationship among the resistance gene(s). Plants were inoculated at the two to three-leaf stages with a spore suspension of P. nodorum isolate Kelvington-SK and disease reaction was assessed 8 days after inoculation based on a lesion-type scale. Tests of the F1 and F2 generations and of F2 : 3 or F2 : 5 families indicated that a single recessive gene controlled resistance to SNB in both hexaploid and tetraploid resistance sources. Lack of segregation in intra-specific and inter-specific crosses between the hexaploid and the tetraploid resistant genotypes, indicated that these genetically diverse sources of resistance possess the same gene for resistance to SNB. Results of this study suggest that the wheat- P. nodorum interaction may follow the toxin model of the gene-for-gene hypothesis. [source]


Inheritance of heading time in spring barley evaluated in multiple environments

PLANT BREEDING, Issue 3 2001
L. W. Gallagher
Abstract The inheritance of heading time of spring barley was studied in three extremely early genotypes IB, RL and ,Mona' (M), which is homozygous recessive for the early maturity ea8 (=eak) gene conferring extreme earliness under short daylengths and is relatively photoperiod insensitive, and five (GP, MA, PS, NU and BA) spring genotypes that are early to intermediate for heading time. Frequency distributions of F2 generations grown at Ouled Gnaou, Morocco (32°15, N), an environment which maximizes differences between photoperiod-insensitive and photoperiod-sensitive genotypes, indicated that across populations many loci were segregating in a complex Mendelian manner. IB and RL were both homozygous recessive for the ea8 gene, which conferred an early heading time. RL had partially dominant alleles at second locus (Enea8), which enhanced its earliness. Recovery of only progeny within the parental range of genotypes for heading time from the crosses of RL/M and IB/M suggests that numerous loci remained suppressed, perhaps latent, given their diverse parentage. The ea8 recessive homozygote in RL suppressed another unidentified locus which, when homozygous recessive in the absence of the ea8 recessive homozygote, conferred extreme earliness in one short daylength environment (Ouled Gnaou, Morocco) but was undetected in another environment (Davis, CA, USA). Epistatic gene action and genotype × environment effects strongly influenced heading time. In addition to a genetic system consisting of single-locus recessive homozygotes conferring photoperiod insensitivity, a second genetic system, based on dominant alleles at one or a few loci, derived from the early heading Finnish landrace ,Olli', also confers extremely early heading time under short daylengths and relative photoperiod insensitivity in the genotype GP. [source]