F2 Animals (f2 + animals)

Distribution by Scientific Domains


Selected Abstracts


Polygenic Control of Idiopathic Generalized Epilepsy Phenotypes in the Genetic Absence Rats from Strasbourg (GAERS)

EPILEPSIA, Issue 4 2004
Gabrielle Rudolf
Summary: Purpose: Generalized nonconvulsive absence seizures are characterized by the occurrence of synchronous and bilateral spike-and-wave discharges (SWDs) on electroencephalographic recordings, concomitant with behavioral arrest. The GAERS (genetic absence rats from Strasbourg) strain, a well-characterized inbred model for idiopathic generalized epilepsy, spontaneously develops EEG paroxysms that resemble those of typical absence seizures. The purpose of this study was to investigate the genetic control of SWD variables by using a combination of genetic analyses and electrophysiological measurements in an experimental cross derived from GAERS and Brown Norway (BN) rats. Methods: SWD subphenotypes were quantified on EEG recordings performed at both 3 and 6 months in a cohort of 118 GAERS × BN F2 animals. A genome-wide scan of the F2 progenies was carried out with 146 microsatellite markers that were used to test each marker locus for evidence of genetic linkage to the SWD quantitative traits. Results: We identified three quantitative trait loci (QTLs) in chromosomes 4, 7, and 8 controlling specific SWD variables in the cross, including frequency, amplitude, and severity of SWDs. Age was a major factor influencing the detection of genetic linkage to the various components of the SWDs. Conclusions: The identification of these QTLs demonstrates the polygenic control of SWDs in the GAERS strain. Genetic linkages to specific SWD features underline the complex mechanisms contributing to SWD development in idiopathic generalized epilepsy. [source]


Mapping QTL for porcine muscle fibre traits in a White Duroc × Erhualian F2 resource population

JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 6 2009
W.B. Li
Summary Muscle fibre traits are related with meat quality in meat animals. In this study, a whole-genome scan with 183 microsatellite markers covering the pig genome was performed to identify quantitative trait loci (QTL) for cross-sectional area, numerical percentage and relative area of type I, IIA and IIB myofibres, fibre number per square centimetre and total fibre number in the longissimus muscle by using 120 F2 animals in a White Duroc × Erhualian intercross. In total, 20 QTL were mapped on pig chromosomes (SSC) 1, 2, 7, 8, 9, 11, 15, 16 and X, of which eight reached genome-wide significance levels and explained large proportions (6.53,34.63%) of phenotypic variance. Five QTL detected in this study confirmed the previous QTL reports and the others were detected for the first time. Chinese Erhualian alleles are generally associated with muscle fibre traits favourable for meat quality. [source]


Porcine ESTs detected by differential display representing possible candidates for the trait ,eye muscle area'

JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 1 2000
By S. Ponsuksili
In order to identify ESTs which represent possible candidates for carcass traits in pigs, the differential display approach was used. F2 animals of a resource population and pure-bred German Landrace (DL) pigs were selected for the trait ,eye muscle area' in order to build up groups of three high and three low performing individuals within each population. To increase the probability that differentially expressed DNA fragments were not found due to the genetic background but due to differences in a few genes affecting the trait of interest, siblings were included in the high and in the low performing groups. RNA was isolated from M. longissimus dorsi and four ,intra-litter constrasting pools' were prepared: high performing F2, low performing F2, high performing DL and low performing DL. Differential display banding patterns were produced using (d)T11VA (V:A,C,G) and 20 arbitrary primers. Comparing the banding patterns of the four RNA pools revealed 27 nonshared bands. Here we report on the analysis of seven of these bands, including sequencing, search for homology and mapping using a somatic cell hybrid panel. Two clones showed high homology to known genes, two were homologous to an EST and a SINE sequence. Three clones did not show any homology. Differential expression was tested by semiquantitative reverse transcription,polymerase chain reaction (RT,PCR) and could be confirmed for six clones. [source]


Localization of the Gene Causing the Osteopetrotic Phenotype in the Incisors Absent (Ia) Rat on Chromosome 10q32.1,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2004
Liesbeth van Wesenbeeck
Abstract The incisors absent rat is an osteopetrotic animal model. Segregation analysis in 37 affected animals from an outcross enabled us to assign the disease causing gene to a 4.7-cM interval on rat chromosome 10q32.1. Further analysis of the genes mapped in this region will provide more insight into the underlying pathogenesis. Introduction: Many of the insights into the factors that regulate the differentiation and activation of osteoclasts are gained from different spontaneous and genetically induced osteopetrotic animal models. The osteopetrotic incisors absent (ia) rat exhibits a generalized skeletal sclerosis and a delay of tooth eruption. Although the ia rat has well been studied phenotypically, the genetic defect still remains unknown. Material and Methods: To map the ia locus, we outcrossed the inbred ia strain with the inbred strain Brown Norway. Intercrossing F1 animals produced the F2 generation. Thirty-one mutant F2 animals and six mutant F4 animals were available for segregation analysis. Results: Segregation analysis enabled us to assign the disease causing gene to rat chromosome 10q32.1. Homozygosity for the ia allele was obtained for two of the markers analyzed (D10Rat18 and D10Rat84). Key recombinations delineate a candidate region of 4.7 cM flanked by the markers D10Rat99 and D10Rat17. Conclusion: We have delineated a 4.7-cM region on rat chromosome 10q32.1 in which the gene responsible for the osteopetrotic phenotype of the ia rat is located. Although the sequence of this chromosomal region is not complete, over 140 known or putative genes have already been assigned to this region. Among these, several candidate genes with a putative role in osteoclast functioning can be identified. However, at this point, it cannot be excluded that one of the genes with a currently unknown function is involved in the pathogenesis of the ia rat. Further analysis of the genes mapped in this region will provide us more insight into the pathogenesis of this osteopetrotic animal model. [source]


Genomewide SNP Screen to Detect Quantitative Trait Loci for Alcohol Preference in the High Alcohol Preferring and Low Alcohol Preferring Mice

ALCOHOLISM, Issue 3 2009
Paula Bice
Background:, The high and low alcohol preferring (HAP1 and LAP1) mouse lines were selectively bred for differences in alcohol intake. The HAP1 and LAP1 mice are essentially noninbred lines that originated from the outbred colony of HS/Ibg mice, a heterogeneous stock developed from intercrossing 8 inbred strains of mice. Methods:, A total of 867 informative SNPs were genotyped in 989 HAP1 × LAP1 F2, 68 F1s, 14 parents (6 LAP1, 8 HAP1), as well as the 8 inbred strains of mice crossed to generate the HS/Ibg colony. Multipoint genome wide analyses were performed to simultaneously detect linked QTLs and also fine map these regions using the ancestral haplotypes. Results:, QTL analysis detected significant evidence of association on 4 chromosomes: 1, 3, 5, and 9. The region on chromosome 9 was previously found linked in a subset of these F2 animals using a whole genome microsatellite screen. Conclusions:, We have detected strong evidence of association to multiple chromosomal regions in the mouse. Several of these regions include candidate genes previously associated with alcohol dependence in humans or other animal models. [source]


Genome-wide identification of quantitative trait loci for carcass composition and meat quality in a large-scale White Duroc × Chinese Erhualian resource population

ANIMAL GENETICS, Issue 5 2009
J. Ma
Summary Carcass and meat quality traits are economically important in pigs. In this study, 17 carcass composition traits and 23 meat quality traits were recorded in 1028 F2 animals from a White Duroc × Erhualian resource population. All pigs in this experimental population were genotyped for 194 informative markers covering the entire porcine genome. Seventy-seven genome-wide significant quantitative trait loci (QTL) for carcass traits and 68 for meat quality were mapped to 34 genomic regions. These results not only confirmed many previously reported QTL but also revealed novel regions associated with the measured traits. For carcass traits, the most prominent QTL was identified for carcass length and head weight at 57 cM on SSC7, which explained up to 50% of the phenotypic variance and had a 95% confidence interval of only 3 cM. Moreover, QTL for kidney and spleen weight and lengths of cervical vertebrae were reported for the first time in pigs. For meat quality traits, two significant QTL on SSC5 and X were identified for both intramuscular fat content and marbling score in the longissimus muscle, while three significant QTL on SSC1 and SSC9 were found exclusively for IMF. Both LM and the semimembranous muscle showed common QTL for colour score on SSC4, 5, 7, 8, 13 and X and discordant QTL on other chromosomes. White Duroc alleles at a majority of QTL detected were favourable for carcass composition, while favourable QTL alleles for meat quality originated from both White Duroc and Erhualian. [source]


A genome scan for quantitative trait loci affecting three ear traits in a White Duroc × Chinese Erhualian resource population

ANIMAL GENETICS, Issue 4 2009
J. Ma
Summary Chinese Erhualian pigs have larger and floppier ears compared with White Duroc pigs (small, half- or fully-pricked ears). To identify quantitative trait loci (QTL) for ear weight and area as well as erectness, a genome-wide scan with 194 microsatellites was performed in a White Duroc × Chinese Erhualian resource population (>1000 F2 animals). Twenty-three genome-wide significant QTL and 12 suggestive QTL were identified. All QTL for ear erectness and size detected in two previous studies, bar two on SSC6 and 9, were confirmed here. The 1% genome-wide significant QTL at 70 cM on SSC5 and at 58 cM on SSC7 have profound and pleiotropic effects on the three ear traits, with Erhualian alleles increasing weight and area but decreasing erectness. Notably, the 95% confidence interval of the QTL for weight and area on SSC7 spanned only 3 cM. New QTL reaching 1% genome-wide significance were found on SSC8 (at 37 cM) for all three ear traits, on SSC4 and 16 for weight and area, and on SSCX for area. Unexpectedly, Erhualian alleles at these loci were associated with lighter and smaller or erect ear. Some new suggestive QTL were also found on other chromosome regions. Almost all the QTL for weight and area had essentially additive effects, while the QTL for erectness on SSC2, 5 and 7 showed not only additive effects but also partial dominance effects of Erhualian alleles. The two most significant QTL on SSC7 and SSC5 could be promising targets for fine mapping and identification of the causative mutations. [source]


Quantitative trait loci for porcine white blood cells and platelet-related traits in a White Duroc × Erhualian F2 resource population

ANIMAL GENETICS, Issue 3 2009
S. Yang
Summary White blood cell count and platelets are implicated as risk factors for common complex diseases. Genetic factors substantially affect these traits in humans and mice. However, little is known about the genetic architecture of these traits in pigs. To identify quantitative trait loci (QTL) for leucocyte- and platelet-related traits in pigs, the total leucocyte number and differential leucocyte counts including the fraction of basophils, eosinophils, lymphocytes, monocytes, neutrophils, and a series of platelet parameters including platelet count, mean platelet volume, platelet distribution width and plateletcrit were measured in 1033 F2 animals on 240 days from a White Duroc × Erhualian intercross resource population. A total of 183 informative microsatellites distributed across 19 pig chromosomes (SSC) were genotyped across the entire resource population. Thirty-three QTL were identified for the examined traits, including eight genome-wide significant QTL for white blood cells and differential leucocyte counts on SSC2, 7, 8, 12 and 15 and six significant QTL for platelet-related traits on SSC2, 8, 13 and X. Erhualian or White Duroc alleles were not systematically associated with increased phenotypic values. These results not only confirmed many QTL identified previously in the mouse and swine, but also revealed a number of novel QTL for the traits recorded. Moreover, it is the first time that QTL for platelet-related traits in pigs have been reported. [source]


A comprehensive analysis of QTL for abdominal fat and breast muscle weights on chicken chromosome 5 using a multivariate approach

ANIMAL GENETICS, Issue 2 2009
G. Le Mignon
Summary Quantitative trait loci (QTL) influencing the weight of abdominal fat (AF) and of breast muscle (BM) were detected on chicken chromosome 5 (GGA5) using two successive F2 crosses between two divergently selected ,Fat' and ,Lean' INRA broiler lines. Based on these results, the aim of the present study was to identify the number, location and effects of these putative QTL by performing multitrait and multi-QTL analyses of the whole available data set. Data concerned 1186 F2 offspring produced by 10 F1 sires and 85 F1 dams. AF and BM traits were measured on F2 animals at slaughter, at 8 (first cross) or 9 (second cross) weeks of age. The F0, F1 and F2 birds were genotyped for 11 microsatellite markers evenly spaced along GGA5. Before QTL detection, phenotypes were adjusted for the fixed effects of sex, F2 design, hatching group within the design, and for body weight as a covariable. Univariate analyses confirmed the QTL segregation for AF and BM on GGA5 in male offspring, but not in female offspring. Analyses of male offspring data using multitrait and linked-QTL models led us to conclude the presence of two QTL on the distal part of GGA5, each controlling one trait. Linked QTL models were applied after correction of phenotypic values for the effects of these distal QTL. Several QTL for AF and BM were then discovered in the central region of GGA5, splitting one large QTL region for AF into several distinct QTL. Neither the ,Fat' nor the ,Lean' line appeared to be fixed for any QTL genotype. These results have important implications for prospective fine mapping studies and for the identification of underlying genes and causal mutations. [source]


Quantitative trait loci for fatty acid composition in longissimus dorsi and abdominal fat: results from a White Duroc × Erhualian intercross F2 population

ANIMAL GENETICS, Issue 2 2009
T. Guo
Summary A whole-genome scan was performed on 660 F2 animals including 250 barrows and 410 gilts in a White Duroc × Erhualian intercross population to detect quantitative trait loci (QTL) for fatty acid composition in the longissimus dorsi muscle and abdominal fat. A total of 153 QTL including 63 genome-wide significant QTL and 90 suggestive effects were identified for the traits measured. Significant effects were mainly evident on pig chromosomes (SSC) 4, 7, 8 and X. No association was detected on SSC3 and 11. In general, the QTL detected in this study showed distinct effects on fatty acid composition in the longissimus muscle and abdominal fat. The QTL for fatty acid composition in abdominal fat did not correspond to those identified previously in backfat and the majority of QTL for the muscle fatty acid composition were mapped to chromosomal regions different from previous studies. Two regions on SSC4 and SSC7 showed significant pleiotropic effects on monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) in both longissimus muscle and abdominal fat. Another two QTL with significant multi-faceted effects on MUFA and PUFA in the longissimus muscle were found each on SSC8 and SSCX. Chinese Erhualian alleles were associated with increased ratios of MUFA to saturated fatty acid at most of the QTL detected, showing beneficial effect in terms of human health. [source]


A linkage map of the porcine genome from a large-scale White Duroc × Erhualian resource population and evaluation of factors affecting recombination rates

ANIMAL GENETICS, Issue 1 2009
Y. Guo
Summary A porcine genome linkage map composed of 194 microsatellite markers was constructed with a large-scale White Duroc × Erhualian resource population. The marker order on this linkage map was consistent with the USDA-MARC reference map except for two markers on SSC3, two markers on SSC13 and two markers on SSCX. The length of the sex-averaged map (2344.9 cM) was nearly the same as that of the USDA-MARC and NIAI map. Highly significant heterogeneity in recombination rates between sexes was observed. Except for SSC1 and SSC13, the female autosomes had higher average recombination rates than the male autosomes. Moreover, recombination rates in the pseudoautosomal region were greater in males than in females. These observations are consistent with those of previous reports. The recombination rates on each paternal and maternal chromosome of F2 animals were calculated. Recombination rates were not significantly affected by the age (in days) or parity of the F1 animals. However, recombination rates on paternal chromosomes were affected by the mating season of the F1 animals. This could represent an effect of environmental temperature on spermatogenesis. [source]


Quantitative trait loci associated with AutoFOM grading characteristics, carcass cuts and chemical body composition during growth of Sus scrofa

ANIMAL GENETICS, Issue 5 2006
M. Mohrmann
Summary A three-generation full-sib resource family was constructed by crossing two commercial pig lines. Genotypes for 37 molecular markers covering chromosomes SSC1, SSC6, SSC7 and SSC13 were obtained for 315 F2 animals of 49 families and their parents and grandparents. Phenotypic records of traits including carcass characteristics measured by the AutoFOM grading system, dissected carcass cuts and meat quality characteristics were recorded at 140 kg slaughter weight. Furthermore, phenotypic records on live animals were obtained for chemical composition of the empty body, protein and lipid accretion (determined by the deuterium dilution technique), daily gain and feed intake during the course of growth from 30 to 140 kg body weight. Quantitative trait loci (QTL) detection was conducted using least-squares regression interval mapping. Highest significance at the 0.1% chromosome-wise level was obtained for five QTL: AutoFOM belly weight on SSC1; ham lean-meat weight, percentage of fat of primal cuts and daily feed intake between 60 and 90 kg live weight on SSC6; and loin lean-meat weight on SSC13. QTL affecting daily gain and protein accretion were found on SSC1 in the same region. QTL for protein and lipid content of empty body at 60 kg liveweight were located close to the ryanodine receptor 1 (RYR1) locus on SSC6. On SSC13, significant QTL for protein accretion and feed conversion ratio were detected during growth from 60 to 90 kg. In general, additive genetic effects of alleles originating from the Piétrain line were associated with lower fatness and larger muscularity as well as lower daily gain and lower protein accretion rates. Most of the QTL for carcass characteristics were found on SSC6 and were estimated after adjustment for the RYR1 gene. QTL for carcass traits, fatness and growth on SSC7 reported in the literature, mainly detected in crosses of commercial lines × obese breeds, were not obtained in the present study using crosses of only commercial lines, suggesting that these QTL are not segregating in the analysed commercial lines. [source]


The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu x Limousin F2 crosses

ANIMAL GENETICS, Issue 4 2006
J. J. Michal
Summary Fatty acid binding protein 4 (FABP4), which is expressed in adipose tissue, interacts with peroxisome proliferator-activated receptors and binds to hormone-sensitive lipase and therefore, plays an important role in lipid metabolism and homeostasis in adipocytes. The objective of this study was to investigate associations of the bovine FABP4 gene with fat deposition. Both cDNA and genomic DNA sequences of the bovine gene were retrieved from the public databases and aligned to determine its genomic organization. Primers targeting two regions of the FABP4 gene were designed: from nucleotides 5433,6106 and from nucleotides 7417,7868 (AAFC01136716). Direct sequencing of polymerase chain reaction (PCR) products on two DNA pools from high- and low-marbling animals revealed two single nucleotide polymorphisms (SNPs): AAFC01136716.1:g.7516G>C and g.7713G>C. The former SNP, detected by PCR-restriction fragment length polymorphism using restriction enzyme MspA1I, was genotyped on 246 F2 animals in a Waygu × Limousin F2 reference population. Statistical analysis showed that the FABP4 genotype significantly affected marbling score (P = 0.0398) and subcutaneous fat depth (P = 0.0246). The FABP4 gene falls into a suggestive/significant quantitative trait loci interval for beef marbling that was previously reported on bovine chromosome 14 in three other populations. [source]