F1 Plants (f1 + plant)

Distribution by Scientific Domains


Selected Abstracts


The function of SULTR2;1 sulfate transporter during seed development in Arabidopsis thaliana

PHYSIOLOGIA PLANTARUM, Issue 1 2005
Motoko Awazuhara
SULTR2;1 is a low-affinity sulfate transporter expressed in the vascular tissues of roots and leaves for interorgan transport of sulfate in Arabidopsis thaliana. Transgenic Arabidopsis carrying a fusion gene construct of SULTR2;1 5,-promoter region and ,-glucuronidase coding sequence (GUS) demonstrated that within the reproductive tissues, SULTR2;1 is specifically expressed in the bases and veins of siliques and in the funiculus, which connects the seeds and the silique. The antisense suppression of SULTR2;1 mRNA caused decrease of sulfate contents in seeds and of thiol contents both in seeds and leaves, as compared with the wildtype (WT). The effect of antisense suppression of SULTR2;1 on seed sulfur status was determined by introducing a sulfur-indicator construct, p35S::,SRx3:GUS, which drives the expression of GUS reporter under a chimeric cauliflower mosaic virus 35S promoter containing a triplicate repeat of sulfur-responsive promoter region of soybean ,-conglycinin , subunit (,SRx3). The mature seeds of F1 plants carrying both the SULTR2;1 antisense and p35S::,SRx3:GUS constructs exhibited significant accumulation of GUS activities on sulfur deficiency, as compared with those carrying only the p35S::,SRx3:GUS construct in the WT background. These results suggested that SULTR2;1 is involved in controlling translocation of sulfate into developing siliques and may modulate the sulfur status of seeds in A. thaliana. [source]


Orange, yellow and white-cream: inheritance of carotenoid-based colour in sunflower pollen

PLANT BIOLOGY, Issue 1 2010
M. Fambrini
Abstract Inheritance of pollen colour was studied in sunflower (Helianthus annuus L.) using three distinct pollen colour morphs: orange, yellow and white-cream. Orange is the most common colour of sunflower pollen, while the yellow morph is less frequent. These two types were observed in the inbred lines F11 and EF2L, respectively. White-cream pollen is a rare phenotype in nature, and was identified in a mutant, named white-cream pollen, recovered in the R2 generation of an in vitro regenerated plant. The F11 inbred line was used as starting material for in vitro regeneration. The carotenoid content of these three pollen morphs differed, and was extremely reduced in white-cream pollen. The phenotype of F1 populations obtained by reciprocal crosses revealed that the orange trait was dominant over both white-cream and yellow. Segregation of F2 populations of both crosses, orange × yellow and orange × white-cream, approached a 3:1 ratio, indicating the possibility of simple genetic control. By contrast, a complementation cross between the two lines with white-cream and yellow pollen produced F1 plants with orange pollen. The F2 populations of this cross-segregated as nine orange: four white-cream: four yellow. A model conforming to the involvement of two unlinked genes, here designated Y and O, can explain these results. Accessions with yellow pollen would have the genotype YYoo, the white-cream pollen mutant would have yyOO and the accession with orange pollen would have YYOO. Within F2 populations of the cross white-cream × yellow a new genotype, yyoo, with white-cream pollen was scored. The results of the cross yyoo × YYoo produced only F1 plants with yellow pollen, supporting a recessive epistatic model of inheritance between two loci. In this model, yy is epistatic on O and o. In F2 populations, the distributions of phenotypic classes suggested that the genetic control of carotenoid content is governed by major genes, with large effects segregating in a background of polygenic variation. These three pollen morphs can provide insight into the sequence in which genes act, as well into the biochemical pathway controlling carotenoid biosynthesis in anthers and the transfer of these different pigments into pollenkitt. [source]


A Cre::FLP fusion protein recombines FRT or loxP sites in transgenic maize plants,

PLANT BIOTECHNOLOGY JOURNAL, Issue 8 2008
Vesna Djukanovic
Summary The coding sequences of Cre (site-specific recombinase from bacteriophage P1) and FLP (yeast 2-µm plasmid site-specific recombinase) were fused in frame to produce a novel, dual-function, site-specific recombinase gene. Transgenic maize plants containing the Cre::FLP fusion expression vector were crossed to transgenic plants containing either the loxP or FRT excision substrate. Complete and precise excisions of chromosomal fragments flanked by the respective target sites were observed in the F1 and F2 progeny plants. The episomal DNA recombination products were frequently lost. Non-recombined FRT substrates found in the F1 plants were recovered in the F2 generation after the Cre::FLP gene segregated out. They produced the recombination products in the F3 generation when crossed back to the FLP-expressing plants. These observations may indicate that the efficiency of site-specific recombination is affected by the plant developmental stage, with site-specific recombination being more prevalent in developing embryos. The Cre::FLP fusion protein was also tested for excisions catalysed by Cre. Excisions were identified in the F1 plants and verified in the F2 plants by polymerase chain reaction and Southern blotting. Both components of the fusion protein (FLP and Cre) were functional and acted with similar efficiency. The crossing strategy proved to be suitable for the genetic engineering of maize using the FLP or Cre site-specific recombination system. [source]


Identification of a single dominant allele for resistance to blackleg in Brassica napus,Surpass 400'

PLANT BREEDING, Issue 6 2003
C.-X. Li
Abstract The inheritance of resistance to blackleg (caused by Leptosphaeria maculans) was examined in the F1 and F2 of a cross between highly resistant canola ,Surpass 400' and susceptible ,Westar' in the field. Blackleg-infected canola straw was collected from the field and scattered among plants to increase disease development with the aid of natural rainfall. Disease severity on seedlings was assessed as the average number of lesions on leaves 1 and 2, and on adult plants as the percentage necrosis on a cross-section of stems immediately above the crown. All ,Westar' plants were susceptible (S) and all ,Surpass 400' and F1 plants were resistant (R) at both growth stages. Disease severity on F2 plants segregated 3 : 1 (R : S) as expected for a single dominant resistance allele in both the seedling and adult plant stages. There was a high proportion (91.1%) of matching reactions (R-R and S-S) between seedling and adult plants. ,Surpass 400' is the source of a single dominant allele for blackleg resistance in Brassica napus that is expressed strongly in both seedlings and adult plants. [source]


Inheritance of reduced plant height in the sunflower line Dw 89

PLANT BREEDING, Issue 5 2003
L. Velasco
Abstract The objective of the present research was to study the inheritance of reduced plant height in the sunflower line Dw 89. Plants of the cytoplasmic male sterile version of this line, cmsDw 89 (mean plant height of 47.4 cm) were crossed with plants of the restorer line RHA 271 (mean of 120.9 cm). F1 plants averaged 120.4 cm, which indicated dominance of standard over reduced plant height. F2 plants followed a segregation pattern of 1 : 15 (reduced : normal height), suggesting that reduced plant height in Dw 89 is controlled by alleles at two loci, designated Dw1 and Dw2. Class assignment in the F2 was confirmed through the evaluation of the F3 generation. Backcrosses to Dw 89 segregated with 1 : 3 (reduced : normal height) ratios, which confirmed the digenic inheritance of the trait. The evaluation of plant height distributions in F3 families suggested possible genetic interaction between the Dw1 and Dw2 loci. [source]


Inheritance of reduced linolenic acid content in the Ethiopian mustard mutant N2-4961

PLANT BREEDING, Issue 3 2002
L. Velasco
Abstract The zero erucic acid Ethiopian mustard lines developed so far are characterized by an exceptionally high linolenic acid content in the seed oil. The mutant line N2-4961, expressing low linolenic acid content in a high erucic acid background, was developed through chemical mutagenesis. The objective of this research was to study the inheritance of low linolenic acid content in this mutant. Line N2-4961 was reciprocally crossed with its parent line C-101 and the linolenic acid content of the reciprocal F1, F2 and BC1 generations was studied. No maternal, cytoplasmic or dominance effects were detected in the analysis of F1 seeds and F1 plants from reciprocal crosses. Linolenic acid content segregated in 1: 2: 1 ratios in all the F2 populations studied, suggesting monogenic inheritance. This was confirmed with the analysis of the reciprocal backcross generation. The simple inheritance of low linolenic acid content in N2-4961 will facilitate the transference of this trait to zero erucic acid lines of Ethiopian mustard. [source]


Inheritance of rust resistance genes and molecular markers in microspore-derived populations of flax

PLANT BREEDING, Issue 1 2001
Y. Chen
Abstract The inheritance patterns of rust resistance genes and molecular markers in microspore-derived populations of flax were investigated. Plants were produced from anther culture of F1 plants from two crosses. Microspore-derived plants in anther culture of flax were identified using molecular markers. Two rust resistance genes and three out of six molecular markers were inherited in expected Mendelian ratios in microspore-derived populations. Distorted segregation for the other three molecular markers was shown to be the result of over-representation of genomic fragments from the more responsive parent in the F1 donor plant. The implication of this study in relation to androgenesis and flax breeding using anther culture is discussed. [source]