Eye-specific Expression (eye-specific + expression)

Distribution by Scientific Domains


Selected Abstracts


Six3 promotes the formation of ectopic optic vesicle-like structures in mouse embryos

DEVELOPMENTAL DYNAMICS, Issue 3 2001
Oleg Lagutin
Abstract A few years ago, three novel murine homeobox genes closely related to the Drosophila sine oculis (so) gene (Six1-3) were isolated and were all included in the Six/so gene family. Because of its early expression in the developing eye field, Six3 was initially thought to be the functional ortholog of the Drosophila so gene. This hypothesis was further supported by the demonstration that ectopic Six3 expression in medaka fish (Oryzias latipes) promotes the formation of ectopic lens and retina tissue. Here, we show that similar to Drosophila, where the eyeless/Pax6 gene regulates the eye-specific expression of so, Six3 expression in the murine lens placodal ectoderm is also controlled by Pax6. We also show that ectopic Six3 expression promotes the formation of ectopic optic vesicle-like structures in the hindbrain-midbrain region of developing mouse embryos. © 2001 Wiley-Liss, Inc. [source]


A new Minos vector for eye-specific expression of white+ marker in Ceratitis capitata and in distantly related dipteran species

INSECT MOLECULAR BIOLOGY, Issue 3 2006
M. Salvemini
Abstract The genetic transformation of insects by transposable elements is based on the use of selectable genetic markers required to identify transgenic individuals. Conserved regulatory sequences can be used to develop single constructs capable of adequate expression of a marker, across a range of different species. We present evidence that the Drosophila GBS regulatory element (Glass-binding site), derived from the Rh1 rhodopsin gene, is able to drive in vivo eye-specific expression of a Ccwhite+ transgene in the Mediterranean fruitfly Ceratitis capitata. The Ceratitis lineage diverged from that of Drosophila,120 Myr ago. As the GBS regulatory sequence seems to be partially conserved in the more distantly related dipteran species Anopheles gambiae (250 Myr), we propose that the GBS may be widely useful for driving eye-specific expression in a wide range of dipteran species. [source]