Home About us Contact | |||
Eye Morphology (eye + morphology)
Selected Abstracts4142: The Sanger Mouse Genetics Programme: high throughput characterisation of knockout miceACTA OPHTHALMOLOGICA, Issue 2010AK GERDIN Purpose The Sanger Mouse Genetics Programme (MGP) aims to make a significant impact on our understanding of the function of genes and their role in disease by generating, characterising and archiving in the order of 200 lines of knockout mice per year, including 40 lines as part of the EUMODIC consortium. The phenotyping screens employed include a wide range of assays relevant to key disease areas including diabetes, obesity, hearing and vision disorders, immune disorders, pain and motor function. The data generated by the primary screen will help to further the understanding of the interplay of genes and disease and will provide an insight into the various underlying biological pathways. All phenotyping data and biological resources generated by the programme are openly available to the scientific community. Methods Eye morphology is routinely assessed using the Slit Lamp and Ophthalmoscope and images are collected when abnormalities are identified. Expression profiling via the lacZ reporter gene is performed for each mutant line in adults and at E14.5. Results To date, the eye screen has been performed on over 180 mutant lines. Here we report examples of novel eye-related abnormalities identified by the eye morphology, embryonic lethality and/or expression screens performed by the Sanger MGP. We will present how to identify a potentially interesting mouse mutant on our database and discuss the impact our knock-out mouse models might have on your research. [source] Bigger is better: implications of body size for flight ability under different light conditions and the evolution of alloethism in bumblebeesFUNCTIONAL ECOLOGY, Issue 6 2007A. KAPUSTJANSKIJ Summary 1In social insects, reproductive success and survival of the colony critically depend on the colony's ability to efficiently allocate workers to the various tasks which need to be performed. In bumblebees, workers show a large variation of body size within a colony. Large workers tend to leave the nest and forage for nectar and pollen, whereas small workers stay inside the nest and fulfill nest duties. It was speculated that size-related differences of the sensory system might contribute to alloethism found in bumblebee colonies. 2In the first part, we investigated how body size determines eye morphology. We measured several eye parameters of Bombus terrestris workers and drones. In both, workers and drones, larger individuals had larger eyes with larger facet diameters, more ommatidia and larger ocelli. At similar body size, drones exhibited larger eyes and ocelli compared to workers. Due to theoretical considerations, we predict that large individuals with large eyes should be better able to operate in illumination conditions of lower intensity than small individuals, since ommatidial sensitivity is proportional to the square of facet diameter. 3In the second part, we tested this prediction. In a behavioural experiment, we first caught bumblebees of various sizes in the field and then determined the lowest light intensity level at which they are just able to fly under controlled laboratory conditions. We tested workers of B. terrestris and B. pascuorum, and workers and drones of B. lapidarius. Large bumblebees were able to fly under lower light levels compared to small bees, with light intensity thresholds ranging from 1·1 to 5·5 lux. 4Our results indicate that the increased light sensitivity of the visual system of large bumblebees allows them to fly under poor light conditions, for example, very early in the morning or late at dusk. This is of potential benefit to the survival of a bumblebee colony since flowers that open early in the morning usually have accumulated a relatively high amount of nectar and pollen throughout the night, and large bumblebees can utilize these resources earlier than most other bees. Thus, our findings have important implications for the understanding of the functional significance and evolution of alloethism in bumblebee colonies. [source] Visual acuity in the cathemeral strepsirrhine Eulemur macaco flavifronsAMERICAN JOURNAL OF PRIMATOLOGY, Issue 4 2009Carrie C. Veilleux Abstract Studies of visual acuity in primates have shown that diurnal haplorhines have higher acuity (30,75 cycles per degree (c/deg)) than most other mammals. However, relatively little is known about visual acuity in non-haplorhine primates, and published estimates are only available for four strepsirrhine genera (Microcebus, Otolemur, Galago, and Lemur). We present here the first measurements of visual acuity in a cathemeral strepsirrhine species, the blue-eyed black lemur (Eulemur macaco flavifrons). Acuity in two subjects, a 3-year-old male and a 16-year-old female, was assessed behaviorally using a two-alternative forced choice discrimination task. Visual stimuli consisted of high contrast square wave gratings of seven spatial frequencies. Acuity threshold was determined using a 70% correct response criterion. Results indicate a maximum visual acuity of 5.1,c/deg for the female (1718 trials) and 3.8,c/deg for the male (846 trials). These values for E. macaco are slightly lower than those reported for diurnal Lemur catta, and are generally comparable to those reported for nocturnal Microcebus murinus and Otolemur crassicaudatus. To examine ecological sources of variation in primate visual acuity, we also calculated maximum theoretical acuity for Cheirogaleus medius (2.8,c/deg) and Tarsius syrichta (8.9,c/deg) using published data on retinal ganglion cell density and eye morphology. These data suggest that visual acuity in primates may be influenced by activity pattern, diet, and phylogenetic history. In particular, the relatively high acuity of T. syrichta and Galago senegalensis suggests that visual predation may be an important selective factor favoring high visual acuity in primates. Am. J. Primatol. 71:343,352, 2009. © 2009 Wiley-Liss, Inc. [source] 4142: The Sanger Mouse Genetics Programme: high throughput characterisation of knockout miceACTA OPHTHALMOLOGICA, Issue 2010AK GERDIN Purpose The Sanger Mouse Genetics Programme (MGP) aims to make a significant impact on our understanding of the function of genes and their role in disease by generating, characterising and archiving in the order of 200 lines of knockout mice per year, including 40 lines as part of the EUMODIC consortium. The phenotyping screens employed include a wide range of assays relevant to key disease areas including diabetes, obesity, hearing and vision disorders, immune disorders, pain and motor function. The data generated by the primary screen will help to further the understanding of the interplay of genes and disease and will provide an insight into the various underlying biological pathways. All phenotyping data and biological resources generated by the programme are openly available to the scientific community. Methods Eye morphology is routinely assessed using the Slit Lamp and Ophthalmoscope and images are collected when abnormalities are identified. Expression profiling via the lacZ reporter gene is performed for each mutant line in adults and at E14.5. Results To date, the eye screen has been performed on over 180 mutant lines. Here we report examples of novel eye-related abnormalities identified by the eye morphology, embryonic lethality and/or expression screens performed by the Sanger MGP. We will present how to identify a potentially interesting mouse mutant on our database and discuss the impact our knock-out mouse models might have on your research. [source] |