Extreme Weather (extreme + weather)

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by Extreme Weather

  • extreme weather event

  • Selected Abstracts


    Time-distributed effect of exposure and infectious outbreaks

    ENVIRONMETRICS, Issue 3 2009
    Elena N. Naumova
    Abstract Extreme weather affects the timing and intensity of infectious outbreaks, the resurgence and redistribution of infections, and it causes disturbances in human-environment interactions. Environmental stressors with high thermoregulatory demands require susceptible populations to undergo physiological adaptive processes potentially compromising immune function and increasing susceptibility to infection. In assessing associations between environmental exposures and infectious diseases, failure to account for a latent period between time of exposure and time of disease manifestation may lead to severe underestimation of the effects. In a population, health effects of an episode of exposure are distributed over a range of time lags. To consider such time-distributed lags is a challenging task given that the length of a latent period varies from hours to months and depends on the type of pathogen, individual susceptibility to the pathogen, dose of exposure, route of transmission, and many other factors. The two main objectives of this communication are to introduce an approach to modeling time-distributed effect of exposures to infection cases and to demonstrate this approach in an analysis of the association between high ambient temperature and daily incidence of enterically transmitted infections. The study is supplemented with extensive simulations to examine model sensitivity to response magnitude, exposure frequency, and extent of latent period. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Wildfire Policy and Public Lands: Integrating Scientific Understanding with Social Concerns across Landscapes

    CONSERVATION BIOLOGY, Issue 4 2004
    MICHAEL P. DOMBECK
    administración de bosques; fuego no controlado; política; Servicio Forestal Estados Unidos; tierras públicas Abstract:,Efforts to suppress wildfires have become increasingly problematic in recent years as costs have risen, threats to firefighter safety have escalated, and detrimental impacts to ecosystems have multiplied. Wildfires that escape initial suppression often expand into large, high-intensity summer blazes. Lost is the legacy of smaller fires that likely burned outside extreme weather and fuel conditions and resulted in less severe impacts. Despite the recognized need for modifications to existing policies and practices, resource agencies have been slow to respond. The spread of exotic species, climate change, and increasing human development in wildlands further complicates the issue. New policies are needed that integrate social and ecological needs across administrative boundaries and broad landscapes. These policies should promote a continuum of treatments with active management and reduction of fuel hazard in wildland-urban interface zones and reintroduction of fire in wildlands. Management goals should focus on restoration of the long-term ecological health of the land. Projects that reduce fuel loads but compromise the integrity of soil, water supplies, or watersheds will do more harm than good in the long run. Despite significant ecological concerns, learning to live with fire remains primarily a social issue that will require greater political leadership, agency innovation, public involvement, and community responsibility. Resumen:,En años recientes, los esfuerzos para suprimir los fuegos no controlados se han vuelto cada vez más problemáticos por el incremento de costos, el aumento de las amenazas a la seguridad de bomberos y se la multiplicio, de los impactos perjudiciales a los ecosistemas. Los incendios que escapan la supresión inicial a menudo se expanden a grandes conflagraciones estivales de alta intensidad. Se ha perdido el legado de fuegos menores que probablemente se llevaban a cabo en condiciones climáticas y de combustible extremas que tenían impactos menos severos. A pesar del reconocimiento de la necesidad de modificaciones a las políticas y prácticas actuales, las agencias han respondido lentamente. La expansión de especies exóticas, el cambio climático y el incremento del desarrollo humano en áreas silvestres complican el problema aún más. Se requieren políticas nuevas que integren necesidades sociales y ecológicas más allá de límites administrativos y en paisajes amplios. Estas políticas deben promover un continuo de tratamientos con gestión activa y reducción de riesgo de combustión en la interfase área silvestre-urbana y la reintroducción de fuego en áreas silvestres. Las metas de la gestión deben enfocar en la restauración de la salud ecológica a largo plazo. Los proyectos que reducen la carga de combustible pero que comprometen la integridad del suelo, las reservas de agua o cuencas hidrológicas no serán de mucha utilidad en el largo plazo. A pesar de preocupaciones ecológicas significativas, aprender a vivir con fuego seguirá siendo un aspecto social que requerirá de mayor liderazgo político, innovación de agencias, participación del público y responsabilidad comunitaria. [source]


    On the climate and weather of mountain and sub-arctic lakes in Europe and their susceptibility to future climate change

    FRESHWATER BIOLOGY, Issue 12 2009
    R. THOMPSON
    Summary 1.,The complex terrain and heterogeneous nature of the mountain environment coupled with remoteness from major centres of human activity makes mountains challenging locations for meteorological investigations. Mountainous areas tend to have more varied and more extreme weather than lowlands. 2.,The EMERGE program has the primary aim of assessing the status of remote mountain and sub-arctic lakes throughout Europe for the first time. In this study, we describe the main features of the climate, ice-cover durations and recent temperature trends of these areas. The main weather characteristics of European mountain and sub-arctic lakes are their cold temperatures and year-round precipitation. Mean annual temperatures are generally close to 0 °C, and maximum summer temperatures reasonably close to 10 °C. 3.,Maritime versus continental settings determine the main differences in annual-temperature range among lake districts (10.5 °C in Scotland to 26.7 °C in Northern Finland), and a similar factor for ice-cover duration. Radiation ranges from low (120 W m,2) in the high latitude sub-arctic and high (237 W m,2) in the southern ranges of the Pyrenees and Rila. Similarly, precipitation is high in the main Alpine chain (250 cm year,1 in the Central Southern Alps) and low in the continental sub-arctic (65 cm year,1 in Northern Finland). 4.,The main temporal patterns in air temperature follow those of the adjacent lowlands. All the lake districts warmed during the last century. Spring temperature trends were highest in Finland; summer trends were weak everywhere; autumn trends were strongest in the west, in the Pyrenees and western Alps; while winter trends varied markedly, being high in the Pyrenees and Alps, low in Scotland and Norway and negative in Finland. 5.,Two new, limnological case studies on Lake Redon, in the Pyrenees, highlight the sensitivity of remote lakes to projected changes in the global climate. These two case studies involve close linkages between extreme chemical-precipitation events and synoptic wind-patterns, and between thermocline behaviour and features of the large-scale circulation. 6.,Individual lakes can be ultra-responsive to climate change. Even modest changes in future air temperatures will lead to major changes in lake temperatures and ice-cover duration and hence probably affect their ecological status. [source]


    Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest

    FUNCTIONAL ECOLOGY, Issue 2 2007
    J. SARDANS
    Summary 1Climate models predict more extreme weather in Mediterranean ecosystems, with more frequent drought periods and torrential rainfall. These expected changes may affect major process in ecosystems such as mineral cycling. However, there is a lack of experimental data regarding the effects of prolonged drought on nutrient cycling and content in Mediterranean ecosystems. 2A 6-year drought manipulation experiment was conducted in a Quercus ilex Mediterranean forest. The aim was to investigate the effects of drought conditions expected to occur over the coming decades, on the contents and concentrations of phosphorus (P) and potassium (K) in stand biomass, and P and K content and availability in soils. 3Drought (an average reduction of 15% in soil moisture) increased P leaf concentration by 18·2% and reduced P wood and root concentrations (30·9% and 39·8%, respectively) in the dominant tree species Quercus ilex, suggesting a process of mobilization of P from wood towards leaves. The decrease in P wood concentrations in Quercus ilex, together with a decrease in forest biomass growth, led to an overall decrease (by approximately one-third) of the total P content in above-ground biomass. In control plots, the total P content in the above-ground biomass increased 54 kg ha,1 from 1999 to 2005, whereas in drought plots there was no increase in P levels in above-ground biomass. Drought had no effects on either K above-ground contents or concentrations. 4Drought increased total soil soluble P by increasing soil soluble organic P, which is the soil soluble P not directly available to plant capture. Drought reduced the ratio of soil soluble inorganic P : soil soluble organic P by 50% showing a decrease of inorganic P release from P bound to organic matter. Drought increased by 10% the total K content in the soil, but reduced the soil soluble K by 20·4%. 5Drought led to diminished plant uptake of mineral nutrients and to greater recalcitrance of minerals in soil. This will lead to a reduction in P and K in the ecosystem, due to losses in P and K through leaching and erosion, if the heavy rainfalls predicted by IPCC (Intergovernmental Panel on Climate Change) models occur. As P is currently a limiting factor in many Mediterranean terrestrial ecosystems, and given that P and K are necessary for high water-use efficiency and stomata control, the negative effects of drought on P and K content in the ecosystem may well have additional indirect negative effects on plant fitness. [source]


    Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie

    GLOBAL CHANGE BIOLOGY, Issue 12 2008
    REBECCA A. SHERRY
    Abstract Global climate change is expected to result in a greater frequency of extreme weather, which can cause lag effects on aboveground net primary production (ANPP). However, our understanding of lag effects is limited. To explore lag effects following extreme weather, we applied four treatments (control, doubled precipitation, 4 °C warming, and warming plus doubled precipitation) for 1 year in a randomized block design and monitored changes in ecosystem processes for 3 years in an old-field tallgrass prairie in central Oklahoma. Biomass was estimated twice in the pretreatment year, and three times during the treatment and posttreatment years. Total plant biomass was increased by warming in spring of the treatment year and by doubled precipitation in summer. However, double precipitation suppressed fall production. During the following spring, biomass production was significantly suppressed in the formerly warmed plots 2 months after treatments ceased. Nine months after the end of treatments, fall production remained suppressed in double precipitation and warming plus double precipitation treatments. Also, the formerly warmed plots still had a significantly greater proportion of C4 plants, while the warmed plus double precipitation plots retained a high proportion of C3 plants. The lag effects of warming on biomass did not match the temporal patterns of soil nitrogen availability determined by plant root simulator probes, but coincided with warming-induced decreases in available soil moisture in the deepest layers of soil which recovered to the pretreatment pattern approximately 10 months after the treatments ceased. Analyzing the data with an ecosystem model showed that the lagged temporal patterns of effects of warming and precipitation on biomass can be fully explained by warming-induced differences in soil moisture. Thus, both the experimental results and modeling analysis indicate that water availability regulates lag effects of warming on biomass production. [source]


    Spatio-temporal climatic change of rainfall in East Java Indonesia

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 4 2008
    Edvin Aldrian
    Abstract Spatial and temporal rainfall analysis of the Brantas Catchment Area (DAS Brantas), East Java, from 1955 to 2005 based on 40 rainfall stations with monthly rainfall data derived from daily rainfall data has been performed. To identify the climatic trend and annual changes in the area over the last five decades, we use the empirical orthogonal function (EOF) method based on multivariate statistics, followed by the fast Fourier transform (FFT) method for the power density spectrum analysis, the non-parametric Mann-Kendall trend test and the wavelet transform method. With EOF, we found the monsoonal rainfall pattern as the most dominant in this area, which explains about 72% of all variances. Without the annual signal, the leading EOF shows significant ENSO-modulated inter-annual and seasonal variabilities, especially during the second transitional period. We found a common and significant negative trend of accumulated rainfall and a negative trend of the monsoonal strength and dominance. This finding leads to changes in the annual pattern, which are increase in the ratio of rainfall during the wet season and increase of the dry spell period or the imbalance of the annual pattern. The increased ratio of the rainfall in the wet season has led to an increased threat of drought in the dry season and extreme weather in the wet season in recent decades. The role of the orographic effect had been detected from the decadal pattern, in which the high-altitude areas have greater rainfall amount all year round. From the decadal isohyets in December/January/February (DJF) and June/July/August (JJA), the rainfall amount decreased significantly during the last five decades as shown by a persistent increase of areas with low rainfall amount. By comparing the time series of rainfall data in two locations, the mountain and coastal areas, we discovered that the dry periods have increased, mainly in the low altitude area. Copyright © 2007 Royal Meteorological Society [source]


    A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow

    JOURNAL OF FISH BIOLOGY, Issue 10 2009
    B. Jonsson
    The present paper reviews the effects of water temperature and flow on migrations, embryonic development, hatching, emergence, growth and life-history traits in light of the ongoing climate change with emphasis on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta. The expected climate change in the Atlantic is for milder and wetter winters, with more precipitation falling as rain and less as snow, decrease in ice-covered periods and frequent periods with extreme weather. Overall, thermal limits for salmonids are species specific. Scope for activity and growth and optimal temperature for growth increase with temperature to an optimal point before constrain by the oxygen content of the water. The optimal temperature for growth decreases with increasing fish size and varies little among populations within species, whereas the growth efficiency may be locally adapted to the temperature conditions of the home stream during the growth season. Indirectly, temperature influences age and size at smolting through its effect on growth. Time of spawning, egg hatching and emergence of the larvae vary with temperature and selective effects on time of first feeding. Traits such as age at first maturity, longevity and fecundity decrease with increasing temperature whilst egg size increases with temperature. Water flow influences the accessibility of rivers for returning adults and speed of both upstream and downstream migration. Extremes in water flow and temperature can decrease recruitment and survival. There is reason to expect a northward movement of the thermal niche of anadromous salmonids with decreased production and population extinction in the southern part of the distribution areas, migrations earlier in the season, later spawning, younger age at smolting and sexual maturity and increased disease susceptibility and mortality. Future research challenges are summarized at the end of the paper. [source]