Extreme Habitats (extreme + habitat)

Distribution by Scientific Domains


Selected Abstracts


Extreme habitats are not refuges: poeciliids suffer from increased aerial predation risk in sulphidic southern Mexican habitats

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2010
RÜDIGER RIESCH
Extreme environments are often considered a predation refuge for organisms living in them. In southern Mexico several species of poeciliid fishes are undergoing incipient speciation in a variety of extreme (i.e. permanently dark and/or sulphidic) freshwater systems, and previous research has demonstrated reproductive isolation between populations from sulphidic and adjacent benign habitats. In the present study, we investigated bird predation rates (measured as successful captures per minute) in two sulphidic surface and several benign surface habitats, to test the hypothesis that extreme habitats are predation refuges. We found capture rates to be approximately 20 times higher in sulphidic environments: probably facilitated by extremophile poeciliids spending most of their time at the water surface, where they engage in aquatic surface respiration as a direct response to hypoxia. Even birds that are usually not considered major fish predators regularly engage in fish predation in the toxic habitats of southern Mexico. Our results demonstrate that extreme environments do not necessarily represent a refuge from predation, and we discuss the general importance of predation in driving incipient speciation in these systems. Finally, we hypothesize that natural selection via avian predation may play an important role in maintaining reproductive isolation between divergent poeciliid populations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 417,426. [source]


On the ecology of the rotifer Cephalodella hoodi from an extremely acidic lake

FRESHWATER BIOLOGY, Issue 9 2005
GUNTRAM WEITHOFF
Summary 1.,The biovolume-specific carbon content, relative egg volume (a measure of per-offspring reproductive investment), growth and grazing rates, and the gross growth efficiency (GGE) of the rotifer Cephalodella hoodi, isolated from an extremely acidic habitat (pH 2.65), were determined and compared with literature values for rotifers living in circum-neutral habitats in order to reveal potential special features or adaptations related to the extreme habitat of C. hoodi. 2.,Of the two dominant phytoflagellates (Ochromonas sp. and Chlamydomonas acidophila) that occur in the natural habitat of C. hoodi, only C. acidophila promoted positive growth and reproduction and, thus, the following results were obtained with C. acidophila as a food alga. 3.,The body volume-specific carbon content of C. hoodi is in the range of that found in rotifers from circum-neutral lakes, suggesting that no costly carbon investment, brought about by the thickening of the lorica, for example, was required to withstand low pH. 4.,The egg volume of C. hoodi exhibited no phenotypic plasticity dependent on the food concentration and, thus, C. hoodi allocated a constant, absolute amount of energy to each individual offspring. No adaptation to low food densities was found. 5.,A dome-shaped type II functional response curve was found to describe the ingestion of Chlamydomonas as a source of food. 6.,Compared with other rotifers, C. hoodi had a high threshold and half-saturating food concentration (=low affinity) but also a high maximum growth rate and a relatively high GGE, suggesting no severe adverse effect of low pH. [source]


Diversity of native and alien plant species on rubbish dumps: effects of dump age, environmental factors and toxicity

DIVERSITY AND DISTRIBUTIONS, Issue 3 2003
Antonín Py
Abstract. The flora of 96 rubbish dumps consisting of organic, inorganic and industrial wastes was studied in the Czech Republic. Some dumps contained toxic substances (heavy metals, chlorethylenes, phenols, polychlorinated biphenyls, oil hydrocarbons and biogas). Statistically significant factors explaining the number and proportional representation of native plant species, archaeophytes (introduced before 1500) and neophytes (introduced later) were determined. In total, 588 species of vascular plants were recorded, with archaeophytes (133 species) over-represented and native species (322 species) and neophytes (133 species) under-represented compared to their proportions in the national flora. Minimum adequate models were used to determine the effects of several factors on species numbers and proportions, independent of other factors. Dump area, human density in the region and altitude (non-significant only in archaeophytes) were correlated positively with species numbers. Dump age, expressed as time since dump establishment, interacted with the dump toxicity; species numbers increased with dump age on non-toxic dumps, whereas on toxic dumps no increase in numbers was noted. For neophytes, dump toxicity also interacted with human density; the increase in numbers of neophytes with human density is more pronounced on toxic than on non-toxic dumps. The variables measured failed to explain observed differences in proportional representation of native species, archaeophytes and neophytes. This suggests that the occurrence of species growing in such extreme habitats is driven overwhelmingly by factors such as anthropogenic disturbance. A possible explanation for the positive effect of altitude on species numbers on dumps is that the effect of heating of the deposited substrate by microbiological processes, documented by previous studies, overrides the effect of altitude which was shown repeatedly to have a negative effect on species richness. Neophyte distribution is driven by an interplay of factors distinct from those influencing the distribution of native species, namely toxicity and human density (the latter we interpret as a surrogate for propagule pressure). Their distribution on studied dumps is more restricted than that of native taxa and archaeophytes, and they are more limited by toxic substrata; more intensive propagule pressure is required for their establishment at dumps with higher toxicity levels. [source]


Extreme habitats are not refuges: poeciliids suffer from increased aerial predation risk in sulphidic southern Mexican habitats

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2010
RÜDIGER RIESCH
Extreme environments are often considered a predation refuge for organisms living in them. In southern Mexico several species of poeciliid fishes are undergoing incipient speciation in a variety of extreme (i.e. permanently dark and/or sulphidic) freshwater systems, and previous research has demonstrated reproductive isolation between populations from sulphidic and adjacent benign habitats. In the present study, we investigated bird predation rates (measured as successful captures per minute) in two sulphidic surface and several benign surface habitats, to test the hypothesis that extreme habitats are predation refuges. We found capture rates to be approximately 20 times higher in sulphidic environments: probably facilitated by extremophile poeciliids spending most of their time at the water surface, where they engage in aquatic surface respiration as a direct response to hypoxia. Even birds that are usually not considered major fish predators regularly engage in fish predation in the toxic habitats of southern Mexico. Our results demonstrate that extreme environments do not necessarily represent a refuge from predation, and we discuss the general importance of predation in driving incipient speciation in these systems. Finally, we hypothesize that natural selection via avian predation may play an important role in maintaining reproductive isolation between divergent poeciliid populations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 417,426. [source]