Home About us Contact | |||
Extreme Environmental Conditions (extreme + environmental_condition)
Selected AbstractsDegradation of Poly(methyl methacrylate) Model Compounds Under Extreme Environmental ConditionsMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 13 2010Francesca Bennet No abstract is available for this article. [source] Life history and population size variability in a relict plant.DIVERSITY AND DISTRIBUTIONS, Issue 1 2008Different routes towards long-term persistence ABSTRACT A central tenet of conservation biology is that population size affects the persistence of populations. However, many narrow endemic species combine small population ranges and sizes with long persistence, thereby challenging this tenet. I examined the performance of three different-sized populations of Petrocoptis pseudoviscosa (Caryophyllaceae), a palaeoendemic rupicolous herb distributed along a small valley in the Spanish Pyrenees. Reproductive and demographic parameters were recorded over 6 years, and deterministic and stochastic matrix models were constructed to explore population dynamics and extinction risk. Populations differed greatly in structure, fecundity, recruitment, survival rate, and life span. Strong differentiation in life-history parameters and their temporal variability resulted in differential population vulnerability under current conditions and simulated global changes such as habitat fragmentation or higher climatic fluctuations. This study provides insights into the capacity of narrow endemics to survive both at extreme environmental conditions and at small population sizes. When dealing with species conservation, the population size,extinction risk relationship may be too simplistic for ancient, ecologically restricted organisms, and some knowledge of life history may be most important to assess their future. [source] Patterns of bacterial diversity across a range of Antarctic terrestrial habitatsENVIRONMENTAL MICROBIOLOGY, Issue 11 2007Etienne Yergeau Summary Although soil-borne bacteria represent the world's greatest source of biological diversity, it is not well understood whether extreme environmental conditions, such as those found in Antarctic habitats, result in reduced soil-borne microbial diversity. To address this issue, patterns of bacterial diversity were studied in soils sampled along a > 3200 km southern polar transect spanning a gradient of increased climate severity over 27° of latitude. Vegetated and fell-field plots were sampled at the Falkland (51°S), South Georgia (54°S), Signy (60°S) and Anchorage Islands (67°S), while bare frost-sorted soil polygons were examined at Fossil Bluff (71°S), Mars Oasis (72°S), Coal Nunatak (72°S) and the Ellsworth Mountains (78°S). Bacterial 16S rRNA gene sequences were recovered subsequent to direct DNA extraction from soil, polymerase chain reaction amplification and cloning. Although bacterial diversity was observed to decline with increased latitude, habitat-specific patterns appeared to also be important. Namely, a negative relationship was found between bacterial diversity and latitude for fell-field soils, but no such pattern was observed for vegetated sites. The Mars Oasis site, previously identified as a biodiversity hotspot within this region, proved exceptional within the study transect, with unusually high bacterial diversity. In independent analyses, geographical distance and vegetation cover were found to significantly influence bacterial community composition. These results provide insight into the factors shaping the composition of bacterial communities in Antarctic terrestrial habitats and support the notion that bacterial diversity declines with increased climatic severity. [source] Viability of Listeria monocytogenes in co-culture with Acanthamoeba spp.FEMS MICROBIOLOGY ECOLOGY, Issue 1 2009Alisha Akya Abstract Listeria monocytogenes is a human pathogen, ubiquitous in the environment, and can grow and survive under a wide range of environmental conditions. It contaminates foods via raw materials or food-processing environments. However, the current knowledge of its ecology and, in particular, the mode of environmental survival and transmission of this intracellular pathogen remains limited. Research has shown that several intracellular pathogens are able to survive or replicate within free-living amoebae. To examine the viability of L. monocytogenes in interaction with Acanthamoeba spp., bacteria were co-cultured with three freshly isolated amoebae, namely Acanthamoeba polyphaga, Acanthamoeba castellanii and Acanthamoeba lenticulata. The survival of bacteria and amoebae was determined using culture techniques and microscopy. Under the experimental conditions used, all amoebae were able to eliminate bacteria irrespective of the hly gene. Bacteria did not survive or replicate within amoeba cells. However, extra-amoebic bacteria grew saprophytically on materials released from amoebae, which may play an important role in the survival of bacteria under extreme environmental conditions. [source] Lipid biomarkers, pigments and cyanobacterial diversity of microbial mats across intertidal flats of the arid coast of the Arabian Gulf (Abu Dhabi, UAE)FEMS MICROBIOLOGY ECOLOGY, Issue 3 2008Raeid M.M. Abed Abstract Variations in morphology, fatty acids, pigments and cyanobacterial community composition were studied in microbial mats across intertidal flats of the arid Arabian Gulf coast. These mats experience combined extreme conditions of salinity, temperature, UV radiation and desiccation depending on their tidal position. Different mat forms were observed depending on the topology of the coast and location. The mats contained 63 fatty acids in different proportions. The increased amounts of unsaturated fatty acids (12,39%) and the trans/cis ratio (0.6,1.6%) of the cyanobacterial fatty acid n- 18:1,9 in the higher tidal mats suggested an adaptation of the mat microorganisms to environmental stress. Chlorophyll a concentrations suggested lower cyanobacterial abundance in the higher than in the lower intertidal mats. Scytonemin concentrations were dependent on the increase in solar irradiation, salinity and desiccation. The mats showed richness in cyanobacterial species, with Microcoleus chthonoplastes and Lyngbya aestuarii morphotypes as the dominant cyanobacteria. Denaturing gradient gel electrophoresis patterns suggested shifts in the cyanobacterial community dependent on drainage efficiency and salinity from lower to higher tidal zones. We conclude that the topology of the coast and the variable extreme environmental conditions across the tidal flat determine the distribution of microbial mats as well as the presence or absence of different microorganisms. [source] Factors affecting the predation of otter (Lutra lutra) on European pond turtle (Emys orbicularis)JOURNAL OF ZOOLOGY, Issue 2 2006J. Lanszki Abstract In this case study, the ecological background of an unusual hunting behaviour was investigated, when otters Lutra lutra preyed upon European pond turtles Emys orbicularis in a Hungarian fish pond system during an 18-month period. Predation on turtle was found only during cold periods (established by spraint analysis and also by the collection of 182 turtle carcasses in 2003). The relationship was not close between fish availability and turtle consumption (rP=,0.325, P=0.19). The crude protein content of the turtle head and leg was higher than that of fish, frog and turtle body, whereas the energy content of the samples was similar. The mean body weight of the killed turtles (460 g) fell within the range of the optimal prey size of the otter. Turtles were used as cache foods by otters during extreme environmental conditions (as in the long winter), but occurred only rarely as buffer foods during moderate winter. In fish ponds, the conservation of the coexistent otter and turtle depends on pond management. The maintenance of a higher fish availability in ponds during winter makes it possible to avoid the need to acquire a proper hunting technique on turtle, indicated by the scarcity of primary fish food. [source] Low-temperature resistance in Polylepis tarapacana, a tree growing at the highest altitudes in the worldPLANT CELL & ENVIRONMENT, Issue 3 2001F. Rada ABSTRACT The Polylepis tarapacana forests found in Bolivia are unique with respect to their altitudinal distribution (4200,5200 m). Given the extreme environmental conditions that characterize these altitudes, this species has to rely on distinct mechanisms to survive stressful temperatures. The purpose of this study was to determine low-temperature resistance mechanisms in P. tarapacana. Tissue was sampled for carbohydrate and proline contents and micro-climatic measurements were made at two altitudes, 4300 and 4850 m, during both the dry cold and wet warm seasons. Supercooling capacity (,3 to ,6 °C for the cold dry and ,7 to ,9 °C for the wet warm season) and injury temperatures (,18 to ,23 °C for both seasons), determined in the laboratory, indicate that P. tarapacana is a frost-tolerant species. On the other hand, an increase in supercooling capacity, as the result of significant increase in total soluble sugar and proline contents, occurs during the wet warm season as a consequence of higher metabolic activity. Hence, P. tarapacana, a frost-tolerant species during the colder unfavourable season, is able to avoid freezing during the more favourable season when minimum night-time temperatures are not as extreme. [source] Investigation by solid-phase microextraction and gas chromatography/mass spectrometry of secondary metabolites in lichens deposited on stone monumentsRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 6 2003Francesco De Angelis Lichens are ubiquitous organisms formed by symbiotic associations of fungal hyphas and algae that also grow under often extreme environmental conditions. They produce secondary metabolites, the so-called lichen substances, whose structural characterization can give an important contribution to lichen taxonomy. Lichens are also widely employed as biomonitors of atmospheric pollution; being epiphyte organisms they tend, in fact, to accumulate exogenous compounds. Moreover, it could be questioned if the environmental stress alters their secondary metabolites production. Therefore, a new strategy for the analysis of the organic substances absorbed or metabolized by lichens has been developed. This method exploits the dry solid-phase microextraction (SPME) headspace technique coupled with gas chromatography/mass spectrometry (GC/MS). Lichens coating the stone surfaces of monuments, located in small towns between high mountains and far away from urban environments, have been investigated. In the field of cultural heritage, this study can contribute to the knowledge of the state of conservation of outdoor exposed historical monuments. Copyright © 2003 John Wiley & Sons, Ltd. [source] |