Home About us Contact | |||
Extracellular Calcium Concentration (extracellular + calcium_concentration)
Selected AbstractsDifferential Ca2+ -dependence of transmitter release mediated by P/Q- and N-type calcium channels at neonatal rat neuromuscular junctionsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2002Marcelo D. Rosato-Siri Abstract N- and P/Q-type voltage dependent calcium channels (VDCCs) mediate transmitter release at neonatal rat neuromuscular junction (NMJ). Thus the neonatal NMJ allows an examination of the coupling of different subtypes of VDCCs to the release process at a single synapse. We studied calcium dependence of transmitter release mediated by each channel by blocking with ,-conotoxin GVIA the N-type channel or with ,-agatoxin IVA the P/Q-type channel while changing the extracellular calcium concentration ([Ca2+]o). Transmitter release mediated by P/Q-type VDCCs showed steeper calcium dependence than N-type mediated release (average slope 3.6 ± 0.09 vs. 2.6 ± 0.03, respectively). Loading the nerve terminals with 10 µm BAPTA-AM in the extracellular solution reduced transmitter release and occluded the blocking effect of ,-conotoxin GVIA (blockade ,2 ± 9%) without affecting the action of ,-agatoxin IVA (blockade 85 ± 4%). Both VDCC blockers were able to reduce the amount of facilitation produced by double-pulse stimulation. In these conditions facilitation was restored by increasing [Ca2+]o. The facilitation index (fi) was also reduced by loading nerve terminals with 10 µm BAPTA-AM (fi = 1.2 ± 0.1). The control fi was 2.5 ± 0.1. These results show that P/Q-type VDCCs were more efficiently coupled to neurotransmitter release than were N-type VDCCs at the neonatal neuromuscular junction. This difference could be accounted for by a differential location of these channels at the release site. In addition, our results indicate that space,time overlapping of calcium domains was required for facilitation. [source] Calcium modulates endopeptidase 24.15 (EC 3.4.24.15) membrane association, secondary structure and substrate specificityFEBS JOURNAL, Issue 12 2005Vitor Oliveira The metalloendopeptidase 24.15 (EP24.15) is ubiquitously present in the extracellular environment as a secreted protein. Outside the cell, this enzyme degrades several neuropeptides containing from 5 to 17 amino acids (e.g. gonadotropin releasing hormone, bradykinin, opioids and neurotensin). The constitutive secretion of EP24.15 from glioma C6 cells was demonstrated to be stimulated linearly by reduced concentrations of extracellular calcium. In the present report we demonstrate that extracellular calcium concentration has no effect on the total amount of the extracellular (cell associated + medium) enzyme. Indeed, immuno-cytochemical analyses by confocal and electron microscopy suggested that the absence of calcium favors the enzyme shedding from the plasma membrane into the medium. Two putative calcium-binding sites on EP24.15 (D93 and D159) were altered by site-directed mutagenesis to investigate their possible contribution to binding of the enzyme at the cell surface. These mutated recombinant proteins behave similarly to the wild-type enzyme regarding enzymatic activity, secondary structure, calcium sensitivity and immunoreactivity. However, immunocytochemical analyses by confocal microscopy consistently show a reduced ability of the D93A mutant to associate with the plasma membrane of glioma C6 cells when compared with the wild-type enzyme. These data and the model of the enzyme's structure as determined by X-ray diffraction suggest that D93 is located at the enzyme surface and is consistent with membrane association of EP24.15. Moreover, calcium was also observed to induce a major change in the EP24.15 cleavage site on distinctive fluorogenic substrates. These data suggest that calcium may be an important modulator of ep24.15 cell function. [source] Cyclosporin A prevents calpain activation despite increased intracellular calcium concentrations, as well as translocation of apoptosis-inducing factor, cytochrome c and caspase-3 activation in neurons exposed to transient hypoglycemiaJOURNAL OF NEUROCHEMISTRY, Issue 6 2003Michel Ferrand-Drake Abstract Blockade of mitochondrial permeability transition protects against hypoglycemic brain damage. To study the mechanisms downstream from mitochondria that may cause neuronal death, we investigated the effects of cyclosporin A on subcellular localization of apoptosis-inducing factor and cytochrome c, activation of the cysteine proteases calpain and caspase-3, as well as its effect on brain extracellular calcium concentrations. Redistribution of cytochrome c occurred at 30 min of iso-electricity, whereas translocation of apoptosis-inducing factor to nuclei occurred at 30 min of recovery following 30 min of iso-electricity. Active caspase-3 and calpain-induced fodrin breakdown products were barely detectable in the dentate gyrus and CA1 region of the hippocampus of rat brain exposed to 30 or 60 min of insulin-induced hypoglycemia. However, 30 min or 3 h after recovery of blood glucose levels, fodrin breakdown products and active caspase-3 markedly increased, concomitant with a twofold increase in caspase-3-like enzymatic activity. When rats were treated with neuroprotective doses of cyclosporin A, but not with FK 506, the redistribution of apoptosis-inducing factor and cytochrome c was reduced and fodrin breakdown products and active caspase-3 immuno-reactivity was diminished whereas the extracellular calcium concentration was unaffected. We conclude that hypoglycemia leads to mitochondrial permeability transition which, upon recovery of energy metabolism, mediates the activation of caspase-3 and calpains, promoting cell death. [source] Familial Hypocalciuric Hypercalcemia Caused by an R648stop Mutation in the Calcium-Sensing Receptor Gene ,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2002Mika Yamauchi Abstract In this study, we report an 84-year-old female proband in a Japanese family with familial hypocalciuric hypercalcemia (FHH) caused by an R648stop mutation in the extracellular calcium-sensing receptor (CaR) gene. At the age of 71 years, she presented with hypercalcemia (11.4 mg/dl), hypocalciuria (Cca/Ccr = 0.003), hypermagnesemia (2.9 mg/dl), and a high-serum parathyroid hormone (PTH) level (midregion PTH, 3225 [160,520] pg/ml). At the age of 74 years, a family screening was carried out and revealed a total of 9 hypercalcemic individuals (all intact PTH values <62 pg/dl) among 17 family members tested, thus, being diagnosed as FHH. Two and one-half of three clearly enlarged parathyroid glands were resected, because persistently high PTH levels (intact PTH, 292 pg/ml; midregion PTH, 5225 pg/ml) and the presence of a markedly enlarged parathyroid gland by several imaging modalities (ultrasonography, computed tomography [CT], magnetic resonance imaging [MRI], and subtraction scintigraphy) suggested coexistent primary hyperparathyroidism (pHPT); however, hypercalcemia persisted postoperatively. Histological and immunohistochemical examination revealed that the resected parathyroid glands showed lipohyperplasia as well as normally expressed Ki67, vitamin D receptor (VDR), and the CaR. Sequence analysis disclosed that the proband and all affected family members had a heterozygous nonsense (R648stop) mutation in the CaR gene. This mutation is located in the first intracellular loop; thus, it would be predicted to produce a truncated CaR having only one transmembrane domain (TMD) and lacking its remaining TMDs, intracellular loops, and C-terminal tail. Western analysis of biotinylated HEK293 cells transiently transfected with this mutant receptor showed cell surface expression of the truncated protein at a level comparable with that of the wild-type CaR. The mutant receptor, however, exhibited no increase in intracellular free calcium concentration (Ca2+i) when exposed to high extracellular calcium concentrations (Ca2+o). The proband's clinical course was complicated because of associated renal tubular acidosis (RTA) and nephrotic syndrome. However, it was unclear whether their association affected the development of elevated serum PTH and parathyroid gland enlargement. This report is the first to show that an R648stop CaR mutation yields a truncated receptor that is expressed on the cell surface but is devoid of biological activity, resulting in FHH. [source] Cyclosporin A prevents calpain activation despite increased intracellular calcium concentrations, as well as translocation of apoptosis-inducing factor, cytochrome c and caspase-3 activation in neurons exposed to transient hypoglycemiaJOURNAL OF NEUROCHEMISTRY, Issue 6 2003Michel Ferrand-Drake Abstract Blockade of mitochondrial permeability transition protects against hypoglycemic brain damage. To study the mechanisms downstream from mitochondria that may cause neuronal death, we investigated the effects of cyclosporin A on subcellular localization of apoptosis-inducing factor and cytochrome c, activation of the cysteine proteases calpain and caspase-3, as well as its effect on brain extracellular calcium concentrations. Redistribution of cytochrome c occurred at 30 min of iso-electricity, whereas translocation of apoptosis-inducing factor to nuclei occurred at 30 min of recovery following 30 min of iso-electricity. Active caspase-3 and calpain-induced fodrin breakdown products were barely detectable in the dentate gyrus and CA1 region of the hippocampus of rat brain exposed to 30 or 60 min of insulin-induced hypoglycemia. However, 30 min or 3 h after recovery of blood glucose levels, fodrin breakdown products and active caspase-3 markedly increased, concomitant with a twofold increase in caspase-3-like enzymatic activity. When rats were treated with neuroprotective doses of cyclosporin A, but not with FK 506, the redistribution of apoptosis-inducing factor and cytochrome c was reduced and fodrin breakdown products and active caspase-3 immuno-reactivity was diminished whereas the extracellular calcium concentration was unaffected. We conclude that hypoglycemia leads to mitochondrial permeability transition which, upon recovery of energy metabolism, mediates the activation of caspase-3 and calpains, promoting cell death. [source] |