Extra Copies (extra + copy)

Distribution by Scientific Domains


Selected Abstracts


Mantle cell lymphoma with aberrant expression of CD10

HISTOPATHOLOGY, Issue 1 2008
U Zanetto
Aims:, Morphological, immunophenotypic and genetic heterogeneity amongst mantle cell lymphomas (MCLs) can lead to difficulties in diagnosis and management. The aim was to describe the clinical and pathological features of MCLs with aberrant expression of CD10. Methods and results:, Of 17 specimens from 13 patients, 14 expressed CD10 and three (presenting before or after a CD10+ specimen) did not. All expressed cyclin D1 and carried the t(11;14)(q13;q32)/CCND1-IGH translocation. Similar to non-selected MCL patients, most patients had disseminated disease and an adverse clinical course. Five specimens showed pleomorphic blastoid morphology and blastoid transformation was associated with a change in phenotype, including gain or loss of CD10. Additional phenotypic variations likely to cause diagnostic difficulty were present in eight specimens: five were CD5, and five (all CD10+) expressed Bcl-6. One Bcl-6+ case carried a BCL-6 translocation and three others had extra copies of the BCL-6 gene. Sequence analysis of the immunoglobulin heavy chain variable region in five cases showed only one to have low-level somatic mutation, indicating that they did not arise from germinal centre B cells. Conclusions:, Expression of CD10 by MCL is often associated with other variant morphological, immunophenotypic or genetic features, but does not reflect derivation from germinal centre B cells. [source]


Identification of 2 putative critical segments of 17q gain in neuroblastoma through integrative genomics

INTERNATIONAL JOURNAL OF CANCER, Issue 5 2008
Jo Vandesompele
Abstract Partial gain of chromosome arm 17q is the most frequent genetic change in neuroblastoma (NB) and constitutes the strongest independent genetic factor for adverse prognosis. It is assumed that 1 or more genes on 17q contribute to NB pathogenesis by a gene dosage effect. In the present study, we applied chromosome 17 tiling path BAC arrays on a panel of 69 primary tumors and 28 NB cell lines in order to reduce the current smallest region of gain and facilitate identification of candidate dosage sensitive genes. In all tumors and cell lines with 17q gain, large distal segments were consistently present in extra copies and no interstitial gains were observed. In addition to these large regions of distal gain with breakpoints proximal to coordinate 44.3 Mb (17q21.32), smaller regions of gain (distal to coordinate 60 Mb at 17q24.1) were found superimposed on the larger region in a minority of cases. Positional gene enrichment analysis for 17q genes overexpressed in NB showed that dosage sensitive NB oncogenes are most likely located in the gained region immediately distal to the most distal breakpoint of the 2 breakpoint regions. Interestingly, comparison of gene expression profiles between primary tumors and normal fetal adrenal neuroblasts revealed 2 gene clusters on chromosome 17q that are overexpressed in NB, i.e. a region on 17q21.32 immediately distal to the most distal breakpoint (in cases with single regions of gain) and 17q24.1, a region coinciding with breakpoints leading to superimposed gain. © 2007 Wiley-Liss, Inc. [source]


Octapeptide repeat insertions increase the rate of protease-resistant prion protein formation

PROTEIN SCIENCE, Issue 3 2006
Roger A. Moore
PrP, prion protein; HaPrP, hamster prion protein; TSE, transmissible spongiform encephalopathies Abstract A central feature of transmissible spongiform encephalopathies (TSE or prion diseases) involves the conversion of a normal, protease-sensitive glycoprotein termed prion protein (PrP-sen) into a pro-tease-resistant form, termed PrP-res. The N terminus of PrP-sen has five copies of a repeating eight amino acid sequence (octapeptide repeat). The presence of one to nine extra copies of this motif is associated with a heritable form of Creutzfeld-Jakob disease (CJD) in humans. An increasing number of octapeptide repeats correlates with earlier CJD onset, suggesting that the rate at which PrP-sen misfolds into PrP-res may be influenced by these mutations. In order to determine if octapeptide repeat insertions influence the rate at which PrP-res is formed, we used a hamster PrP amyloid-forming peptide (residues 23,144) into which two to 10 extra octapeptide repeats were inserted. The spontaneous formation of protease-resistant PrP amyloid from these peptides was more rapid in response to an increased number of octapeptide repeats. Furthermore, experiments using full-length glycosylated hamster PrP-sen demonstrated that PrP-res formation also occurred more rapidly from PrP-sen molecules expressing 10 extra copies of the octapeptide repeat. The rate increase for PrP-res formation did not appear to be due to any influence of the octapeptide repeat region on PrP structure, but rather to more rapid binding between PrP molecules. Our data from both models support the hypothesis that extra octapeptide repeats in PrP increase the rate at which protease resistant PrP is formed which in turn may affect the rate of disease onset in familial forms of CJD. [source]


The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae)

INSECT MOLECULAR BIOLOGY, Issue 2 2006
I. Kim
Abstract We determined the complete nucleotide sequences of the mitochondrial genome (mitogenome) of the Korean hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae). The entire mitochondrial DNA (mtDNA) molecule was 15 314 bp long. The C. raphaelis genes were in the same order and orientation as the completely sequenced mitogenomes of other lepidopteran species, except for the presence of an extra copy of tRNASer(AGN). High similarity in primary sequence and secondary structure between the two tandemly located copies of the tRNASer(AGN) suggest a recent duplication of an original single tRNASer(AGN). The DHU arm of the two copies of tRNASer(AGN) formed a simple loop as seen in many other metazoan mt tRNASer(AGN). The putative initiation codon for the C. raphaelis COI gene appears to be a tetranucleotide, TTAG, found commonly in the sequenced lepidopterans. ATPase8, ATPase6, ND4L and ND6 genes, which are next to another protein-coding gene at their 3, end all had the sequences potential to form a hairpin structure, suggesting the importance of such a structure for precise cleavage of the mature protein-coding genes. [source]


The ,-glutamylcysteine synthetase gene of Leishmania is essential and involved in response to oxidants

MOLECULAR MICROBIOLOGY, Issue 4 2009
Angana Mukherjee
Summary Gamma-glutamylcysteine synthetase, encoded by the GSH1 gene, is the rate-limiting enzyme in the biosynthesis of glutathione and of trypanothione in Leishmania. The importance of GSH1 was assessed by generating GSH1 null mutants in Leishmania infantum. Removal of even a single wild-type allelic copy of GSH1 invariably led to the generation of an extra copy of GSH1, maintaining two intact wild-type alleles. However, by first supplementing the parasites with a rescue plasmid, we succeeded in obtaining both a single and null chromosomal GSH1 mutants. Parasites with one intact GSH1 chromosomal allele lost the rescuing plasmid but not the double knockout, when grown in the absence of antibiotic, indicating the essentiality of the GSH1 gene in Leishmania. Heterozygous mutants with one allele-inactivated transcribed less GSH1 mRNA and synthesized less glutathione and trypanothione. These mutants were more susceptible to oxidative stresses in vitro as promastigotes and showed decreased survival inside activated macrophages producing reactive oxygen or nitrogen species. These mutants showed a significant decreased survival in the presence of antimony (SbV) compared with control cells. All phenotypes were reverted in the add-back mutant, thus proving the importance of thiols in dealing with oxidants including the action of antimonials. [source]


Interferon-, treatment of female (NZW × BXSB)F1 mice mimics some but not all features associated with the Yaa mutation

ARTHRITIS & RHEUMATISM, Issue 4 2009
Meera Ramanujam
Objective Male (NZW × BXSB)F1 mice develop antiphospholipid syndrome (APS) and proliferative glomerulonephritis that is markedly accelerated by the Yaa locus encoding an extra copy of Tlr7. Female (NZW × BXSB)F1 mice with only 1 active copy of Tlr7 develop late-onset glomerulonephritis but not APS. Because a major function of Toll-like receptor 7 is to induce type I interferons (IFNs), our goal was to determine whether IFN, can induce or accelerate the manifestations of systemic lupus erythematosus (SLE) in female (NZW × BXSB)F1 mice. Methods Eight-week-old female (NZW × BXSB)F1 mice were injected with a single dose of adenovirus expressing IFN,. Mice were monitored for the development of thrombocytopenia and proteinuria. Sera were tested for anticardiolipin and anti-Sm/RNP antibodies. Mice were killed at 17 or 22 weeks of age, and their kidneys and hearts were examined histologically and by immunohistochemistry. Spleen cells were phenotyped, and enzyme-linked immunospot assays for autoantibody-producing B cells were performed. Results IFN, markedly accelerated nephritis and death in female (NZW × BXSB)F1 mice. A significant increase in spleen cell numbers associated with a striking increase in the number of activated B and T cells was observed. Marginal-zone B cells were retained. IFN,-induced increased titers of autoantibodies were observed, but thrombocytopenia was not observed. Cardiac damage was milder than that in male mice. Conclusion IFN, accelerates the development of renal inflammatory disease in female (NZW × BXSB)F1 mice but induces only mild APS and does not induce thrombocytopenia. The effect of IFN, on SLE disease manifestations is strain dependent. These findings are relevant to our understanding of the physiologic significance of the IFN signature. [source]