Extensor Digitorum Longus (extensor + digitorum_longu)

Distribution by Scientific Domains

Terms modified by Extensor Digitorum Longus

  • extensor digitorum longu muscle

  • Selected Abstracts


    FT-IR spectroscopy in diagnosis of diabetes in rat animal model

    JOURNAL OF BIOPHOTONICS, Issue 8-9 2010
    Feride Severcan
    Abstract In recent years, Fourier Transform Infrared (FT-IR) spectroscopy has had an increasingly important role in the field of pathology and diagnosis of disease states. In the current study, FT-IR spectroscopy together with cluster analysis were used as a diagnostic tool in the discrimination of diabetic samples from control ones in rat kidney plasma membrane apical sides (brush-border membranes), liver microsomal membranes and Extensor digitorum longus (EDL) and Soleus (SOL) skeletal muscle tissues. A variety of alterations in the spectral parameters, such as frequency and signal intensity/area was observed in diabetic tissues and membranes compared to the control samples. Based on these spectral variations, using cluster analysis successful differentiation between diabetic and control groups was obtained in different spectral regions. The results of this current study further revealed the power and sensitivity of FT-IR spectroscopy in precise and automated diagnosis of diabetes. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Contraction-induced changes in skeletal muscle Na+,K+ pump mRNA expression , importance of exercise intensity and Ca2+ -mediated signalling

    ACTA PHYSIOLOGICA, Issue 4 2010
    N. B. Nordsborg
    Abstract Aim:, To investigate if exercise intensity and Ca2+ signalling regulate Na+,K+ pump mRNA expression in skeletal muscle. Methods:, The importance of exercise intensity was evaluated by having trained and untrained humans perform intense intermittent and prolonged exercise. The importance of Ca2+ signalling was investigated by electrical stimulation of rat soleus and extensor digitorum longus (EDL) muscles in combination with studies of cell cultures. Results:, Intermittent cycling exercise at ,85% of VO2peak increased (P < 0.05) ,1 and ,1 mRNA expression ,2-fold in untrained and trained subjects. In trained subjects, intermittent exercise at ,70% of VO2peak resulted in a less (P < 0.05) pronounced increase (,1.4-fold; P < 0.05) for ,1 and no change in ,1 mRNA. Prolonged low intensity exercise increased (P < 0.05) mRNA expression of ,1 ,3.0-fold and ,2 ,1.8-fold in untrained but not in trained subjects. Electrical stimulation of rat soleus, but not EDL, muscle increased (P < 0.05) ,1 mRNA expression, but not when combined with KN62 and cyclosporin A incubation. Ionomycin incubation of cultured primary rat skeletal muscle cells increased (P < 0.05) ,1 and reduced (P < 0.001) ,2 mRNA expression and these responses were abolished (P < 0.05) by co-incubation with cyclosporin A or KN62. Conclusion:, (1) Exercise-induced increases in Na+,K+ pump ,1 and ,1 mRNA expression in trained subjects are more pronounced after high- than after moderate- and low-intensity exercise. (2) Both prolonged low and short-duration high-intensity exercise increase ,1 mRNA expression in untrained subjects. (3) Ca2+i regulates ,1 mRNA expression in oxidative muscles via Ca2+/calmodulin-dependent protein kinase (CaMK) and calcineurin signalling pathways. [source]


    Correlation of dystrophin,glycoprotein complex and focal adhesion complex with myosin heavy chain isoforms in rat skeletal muscle

    ACTA PHYSIOLOGICA, Issue 4 2009
    S. Masuda
    Abstract Aim:, The dystrophin,glycoprotein complex (DGC) and focal adhesion complex (FAC) are transmembrane structures in muscle fibres that link the intracellular cytoskeleton to the extracellular matrix. DGC and FAC proteins are abundant in slow-type muscles, indicating the structural reinforcement which play a pivotal role in continuous force output to maintain posture for long periods. The aim of the present study was to examine the expression of these structures across fast-type muscles containing different myosin heavy chain (MHC) isoform patterns which reflect the fatigue-resistant characteristics of skeletal muscle. Methods:, We measured the expression of dystrophin and ,1 integrin (representative proteins of DGC and FAC respectively) in plantaris, extensor digitorum longus, tibialis anterior, red and white portions of gastrocnemius, superficial portion of vastus lateralis and diaphragm, in comparison with soleus (SOL) and cardiac muscle from rats. Results:, The expression of dystrophin and ,1 integrin correlated positively with the percentage of type I, IIa and IIx MHC isoforms and negatively with that of type IIb MHC isoform in fast-type skeletal muscles, and their expression was abundant in SOL and cardiac muscle. Conclusion:, Our results support the idea that DGC and FAC are among the factors that explain the fatigue-resistant property not only of slow-type but also of fast-type skeletal muscles. [source]


    The energetic cost of activation in mouse fast-twitch muscle is the same whether measured using reduced filament overlap or N -benzyl- p -toluenesulphonamide

    ACTA PHYSIOLOGICA, Issue 4 2008
    C. J. Barclay
    Abstract Aim:, Force generation and transmembrane ion pumping account for the majority of energy expended by contracting skeletal muscles. Energy turnover for ion pumping, activation energy turnover (EA), can be determined by measuring the energy turnover when force generation has been inhibited. Most measurements show that activation accounts for 25,40% of isometric energy turnover. It was recently reported that when force generation in mouse fast-twitch muscle was inhibited using N -benzyl- p -toluenesulphonamide (BTS), activation accounted for as much as 80% of total energy turnover during submaximal contractions. The purpose of this study was to compare EA measured by inhibiting force generation by: (1) the conventional method of reducing contractile filament overlap; and (2) pharmacological inhibition using BTS. Methods:, Experiments were performed in vitro using bundles of fibres from mouse fast-twitch extensor digitorum longus (EDL) muscle. Energy turnover was quantified by measuring the heat produced during 1-s maximal and submaximal tetanic contractions at 20 and 30 °C. Results:,EA measured using reduced filament overlap was 0.36 ± 0.04 (n = 8) at 20 °C and 0.31 ± 0.05 (n = 6) at 30 °C. The corresponding values measured using BTS in maximal contractions were 0.46 ± 0.06 and 0.38 ± 0.06 (n = 6 in both cases). There were no significant differences among these values. EA was also no different when measured using BTS in submaximal contractions. Conclusion:, Activation energy turnover is the same whether measured using BTS or reduced filament overlap and accounts for slightly more than one-third of isometric energy turnover in mouse EDL muscle. [source]


    Skeletal muscle HSP72 response to mechanical unloading: influence of endurance training

    ACTA PHYSIOLOGICA, Issue 4 2004
    D. Desplanches
    Abstract Aims:, It has been shown that increased contractile activity results in heat shock protein 72 (HSP72) accumulation in various skeletal muscles. By contrast, there is no consensus for muscle HSP72 response to muscle disuse for short duration (5,8 days). On the basis of a greater constitutive HSP72 expression in slow-twitch muscles we tested the hypothesis that mechanical unloading for a longer period (2 weeks) would affect this phenotype to a greater extent. Secondly, we evaluated the effects of a physiological muscle heat shock protein (HSP) enhancer (endurance training) on HSP response to unloading and muscle remodelling. Methods:, Adult male Wistar rats were assigned randomly to four groups: (1) sedentary weight-bearing; (2) hindlimb-unloaded (HU) via tail suspension for 2 week; (3) trained on a treadmill (6 week) and (4) trained 6 week and then HU for 2 week. Results:, Unloading resulted in a preferential atrophy of slow muscles [soleus (SOL), adductor longus (AL)] and a slow-to-fast fibre transition with no change in HSP72 level. HSP72 levels were significantly lower in fast muscles [extensor digitorum longus (EDL) and plantaris (PLA)], and did not change with mechanical unloading. Endurance training was accompanied by a small (SOL) or a large (EDL, PLA) increase in HSP72 level with no change in AL. Training-induced accumulation of HSP72 disappeared with subsequent unloading in the SOL and PLA whereas HSP72 content remained elevated in EDL. Conclusion:, The results of this study indicate that (1) after 2 weeks of unloading no change occurred in HSP72 protein levels of slow-twitch muscles despite a slow-to-fast fibre transition; and (2) the training-induced increase of HSP72 content in skeletal muscles did not attenuate fibre transition. [source]


    A cytoskeletal tropomyosin can compromise the structural integrity of skeletal muscle

    CYTOSKELETON, Issue 9 2009
    Anthony J. Kee
    Abstract We have identified a number of extra-sarcomeric actin filaments defined by cytoskeletal tropomyosin (Tm) isoforms. Expression of a cytoskeletal Tm (Tm3) not normally present in skeletal muscle in a transgenic mouse resulted in muscular dystrophy. In the present report we show that muscle pathology in this mouse is late onset (between 2 and 6 months of age) and is predominately in the back and paraspinal muscles. In the Tm3 mice, Evans blue dye uptake in muscle and serum levels of creatine kinase were markedly increased following downhill exercise, and the force drop following a series of lengthening contractions in isolated muscles (extensor digitorum longus) was also significantly increased in these mice. These results demonstrate that expression of an inappropriate Tm in skeletal muscle results in increased susceptibility to contraction-induced damage. The extra-sarcomeric actin cytoskeleton therefore may have an important role in protecting the muscle from contractile stress. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


    Quantification of surface EMG signals to monitor the effect of a Botox treatment in six healthy ponies and two horses with stringhalt: Preliminary study

    EQUINE VETERINARY JOURNAL, Issue 3 2009
    I. D. Wijnberg
    Summary Reasons for performing the study: Therapeutic options for stringhalt in horses are limited, whereas medical experiences with botulinum toxin type A (Botox) have been positive. To evaluate its effectiveness in horses, surface electromyography (sEMG) signals before and after injection need to be quantified. Hypothesis: Treatment of healthy ponies and cases with Botox should reduce muscle activity in injected muscles and reduce spastic movements without adverse side effects. Methods: Unilaterally, the extensor digitorum longus, extensor digitorum lateralis and lateral vastus muscles of 6 healthy mature Shetland ponies and 2 talented Dutch Warmblood dressage horses with stringhalt were injected (maximum of 400 iu per pony and 700 iu per case; 100 iu in 5 ml NaCl divided into 5 injections) with Botox under needle EMG guidance. Surface EMG data were evaluated using customised software, and in the individuals gait was analysed using Proreflex. Statistical analysis was performed using mixed models and independent sample t test (P<0.05). Results: Surface EMG signals were quantified using customised software. The area under the curve (integrated EMG) in time was used as variable. It became significantly reduced in injected muscles after injection of Botox in normal ponies (P<0.05). This effect was present from Day 1 until Day 84 after injection. In the 2 cases, after injection of 3 muscles, the integrated EMG in time became significantly reduced in all 3 muscles. Kinematic measurements confirmed reduction of frequency and amplitude of hyperflexing or hyperabducting strides of the affected hindlimbs. The duration of effect was also seen in the cases until around 12 weeks after injection. Conclusions and potential relevance: After EMG guided injections of Botox, sEMG signals recorded from injected muscle were reduced, which proves this to be a useful tool in statistically evaluating a treatment effect. The positive results of this pilot study encourage further research with a larger group of clinical cases. [source]


    Ovalbumin-induced sensitization affects non-quantal acetylcholine release from motor nerve terminals and alters contractility of skeletal muscles in mice

    EXPERIMENTAL PHYSIOLOGY, Issue 2 2009
    Alexander Y. Teplov
    Skeletal muscles play key roles in the development of various pathologies, including bronchial asthma and several types of auto-immune disorders, e.g. polymyositis. Since most of these maladies have an immunological/allergic element, this paper is devoted to assessing the impact of immunobiological reorganization on the functional properties of isolated skeletal muscles in mice. A combination of two methods (myography and electrophysiology) was used to evaluate extensor digitorum longus (EDL) and diaphragmatic muscle (DM) in this regard. Conventional myographic technique showed that ovalbumin-induced sensitization (OS) produced different changes in the contractile properties of EDL and DM. The amplitudes of carbachol (CCh)-induced contractions increased in DM but decreased in EDL. Those changes were inversely related to OS-mediated changes of non-quantal acetylcholine (ACh) release intensity within the muscle endplate, as shown by the electrophysiologically measured H-effect. These results clearly show that OS-mediated changes of non-quantal ACh release alter the functional properties of postjunctional ACh receptors and therefore contribute to the disturbance of CCh-induced contractility of skeletal muscles. Other mechanisms of OS-mediated changes of skeletal muscle contractility are also proposed and discussed. [source]


    Differences in Local Environment Determine the Site of Physiological Angiogenesis in Rat Skeletal Muscle

    EXPERIMENTAL PHYSIOLOGY, Issue 5 2003
    I. Badr
    The specificity in location of angiogenesis to either glycolytic or oxidative fibre types, or muscle regions, was examined in the tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of rat. Angiogenesis was induced by mechanical means either with (chronic muscle stimulation) or without (muscle stretch by overload) changes in blood flow, treatments which invoked only minor changes in fibre type and fibre size. Proliferation estimated by PCNA labelling of cells co-localised with capillaries was very rare in control muscles, where it occurred mainly in the glycolytic regions, but was increased in both models of angiogenesis. However, when labelled capillaries were scored according to the type of surrounding fibres, only muscle stimulation significantly accentuated proliferation of capillaries surrounded by glycolytic fibres. We conclude that while mechanical stimuli are important for proliferation in glycolytic regions in both models, capillary growth occurs specifically around glycolytic fibres in that region when the angiogenic stimulus includes increased blood flow and/or increased metabolic demand. [source]


    Chronic Hypoxia Induces Prolonged Angiogenesis in Skeletal Muscles of Rat

    EXPERIMENTAL PHYSIOLOGY, Issue 3 2002
    D. Deveci
    Skeletal muscle capillarity and fibre cross-sectional area were investigated within and between diaphragm (Diaph), extensor digitorum longus (EDL), soleus (SOL) and tibialis anterior (TA) muscles of control and chronic hypoxic (12% O2 for 6 weeks) adult male Wistar rats (final body mass ,355 g). Cryostat sections were stained for alkaline phosphatase activity to depict all capillaries, and for succinic dehydrogenase to demonstrate regional differences in oxidative capacity within the muscles. Hypoxia-induced angiogenesis occurred in all muscles (P < 0.01), with capillary-to-fibre ratio (C:F) being higher in the more active and oxidative muscles, Diaph (27%) and SOL (26%), than phasically active and glycolytic muscles, TA (21%) and EDL (15%). Diaph, SOL and EDL maintained fibre size, and hence showed an increased capillary density (CD) and reduced intramuscular diffusion distance (DD), whereas TA showed fibre hypertrophy and maintained CD and DD compared to control muscles. The extent of angiogenesis among different regions of muscle varied so as to suggest that muscle fibre size has an additional influence on capillary growth during chronic systemic hypoxia, which is progressive over an extended period of systemic hypoxia. [source]


    Selective Long-Term Electrical Stimulation of Fast Glycolytic Fibres Increases Capillary Supply but not Oxidative Enzyme Activity in Rat Skeletal Muscles

    EXPERIMENTAL PHYSIOLOGY, Issue 5 2000
    S. Egginton
    Glycolytic fibres in rat extensor digitorum longus (EDL) and tibialis anterior (TA) were selectively activated, as demonstrated by glycogen depletion, by indirect electrical stimulation via electrodes implanted in the vicinity of the peroneal nerve using high frequency (40 Hz) trains (250 ms at 1 Hz) and low voltage (threshold of palpable contractions). This regime was applied 10 times per day, each bout being of 15 min duration with 60 min recovery, for 2 weeks. Cryostat sections of muscles were stained for alkaline phosphatase to depict capillaries, succinate dehydrogenase (SDH) to demonstrate oxidative fibres, and periodic acid-Schiff reagent (PAS) to verify glycogen depletion. Specific activity of hexokinase (HK), 6-phosphofructokinase, pyruvate kinase, glycogen phosphorylase and cytochrome c oxidase (COX) were estimated separately in homogenates of the EDL and the predominantly glycolytic cortex and oxidative core of the TA. Stimulation increased the activity of HK but not that of oxidative enzymes in fast muscles. Comparison of changes in oxidative capacity and capillary supply showed a dissociation in the predominantly glycolytic TA cortex. Here, COX was 3.9 ± 0.68 ,M min-1 (g wet wt)-1 in stimulated muscles compared with 3.7 ± 0.52 ,M min-1 (g wet wt)-1 in contralateral muscles (difference not significant), while the percentage of oxidative fibres (those positively stained for SDH) was also similar in stimulated (14.0 ± 2.8%) and contralateral (12.2 ± 1.9%) muscles. In contrast, the capillary to fibre ratio was significantly increased (2.01 ± 0.12 vs. 1.55 ± 0.04, P < 0.01). We conclude that capillary supply can be increased independently of oxidative capacity, possibly due to haemodynamic factors, and serves metabolite removal to a greater extent than substrate delivery. [source]


    Parvalbumin deficiency in fast-twitch muscles leads to increased ,slow-twitch type' mitochondria, but does not affect the expression of fiber specific proteins

    FEBS JOURNAL, Issue 1 2006
    Peter Racay
    Parvalbumin (PV), a small cytosolic protein belonging to the family of EF-hand calcium-binding proteins, is highly expressed in mammalian fast-twitch muscle fibers. By acting as a ,slow-onset' Ca2+ buffer, PV does not affect the rapid contraction phase, but significantly contributes to increase the rate of relaxation, as demonstrated in PV,/, mice. Unexpectedly, PV,/, fast-twitch muscles were considerably more resistant to fatigue than the wild-type fast-twitch muscles. This effect was attributed mainly to the increased fractional volume of mitochondria in PV,/, fast-twitch muscle, extensor digitorum longus, similar to levels observed in the slow-twitch muscle, soleus. Quantitative analysis of selected mitochondrial proteins, mitochondrial DNA-encoded cytochrome oxidase c subunit I and nuclear DNA-encoded cytochrome oxidase c subunit Vb and F1-ATPase subunit , revealed the PV,/,tibialis anterior mitochondria composition to be almost identical to that in wild-type soleus, but not in wild-type fast-twitch muscles. Northern and western blot analyses of the same proteins in different muscle types and in liver are indicative of a complex regulation, probably also at the post-transcriptional level. Besides the function in energy metabolism, mitochondria in both fast- and slow-twitch muscles act as temporary Ca2+ stores and are thus involved in the shaping of Ca2+ transients in these cells. Previously observed altered spatio-temporal aspects of Ca2+ transients in PV,/, muscles are sufficient to up-regulate mitochondria biogenesis through the probable involvement of both calcineurin- and Ca2+/calmodulin-dependent kinase II-dependent pathways. We propose that ,slow-twitch type' mitochondria in PV,/, fast muscles are aimed to functionally replace the slow-onset buffer PV based on similar kinetic properties of Ca2+ removal. [source]


    Spatial insulin signalling in isolated skeletal muscle preparations

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2010
    Peter Sogaard
    Abstract During in vitro incubation in the absence or presence of insulin, glycogen depletion occurs in the inner core of the muscle specimen, concomitant with increased staining of hypoxia-induced-factor-1-alpha and caspase-3, markers of hypoxia and apoptosis, respectively. The aim of this study was to determine whether insulin is able to diffuse across the entire muscle specimen in sufficient amounts to activate signalling cascades to promote glucose uptake and glycogenesis within isolated mouse skeletal muscle. Phosphoprotein multiplex assay on lysates from muscle preparation was performed to detect phosphorylation of insulin-receptor on Tyr1146, Akt on Ser473 and glycogen-synthases-kinase-3 on Ser21/Ser9. To address the spatial resolution of insulin signalling, immunohistochemistry studies on cryosections were performed. Our results provide evidence to suggest that during the in vitro incubation, insulin sufficiently diffuses into the centre of tubular mouse muscles to promote phosphorylation of these signalling events. Interestingly, increased insulin signalling was observed in the core of the incubated muscle specimens, correlating with the location of oxidative fibres. In conclusion, insulin action was not restricted due to insufficient diffusion of the hormone during in vitro incubation in either extensor digitorum longus or soleus muscles from mouse under the specific experimental settings employed in this study. Hence, we suggest that the glycogen depleted core as earlier observed is not due to insufficient insulin action. J. Cell. Biochem. 109: 943,949, 2010. © 2010 Wiley-Liss, Inc. [source]


    Androgen Receptor Expression in the Levator Ani Muscle of Male Mice

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2007
    J. A. Johansen
    The spinal nucleus of the bulbocavernosus (SNB) is a sexually dimorphic group of motoneurones that innervates the bulbocavernosus (BC) and levator ani (LA), skeletal muscles that attach to the base of the penis. In many species, including mice, rats and hamsters, the LA and BC have been found to be highly responsive to androgen and, in rats, these muscles mediate several effects of androgen on the SNB system. However, characterising the SNB system in mice is important because of the availability of genetic models in this species. In the present study, we examined AR expression in skeletal muscles of C57/BlJ6 adult male mice using immunoblotting and immunocytochemistry, comparing the BC/LA to the androgen-unresponsive extensor digitorum longus (EDL). We found similar differences in AR expression for these muscles in the mouse as previously reported for rats. In mice, the BC/LA contains more AR protein than does the EDL. At the cellular level, the LA contains a higher percentage of AR positive myonuclei and fibroblasts than does the EDL. Finally, AR expression is enriched at the neuromuscular junction of mouse LA fibres. The increased expression of AR in the LA compared to the EDL in both muscle fibres and fibroblasts indicates that each cell type may critically mediate androgen action on the SNB system in mice. [source]


    Evaluation of a novel biomaterial for intrasubstance muscle laceration repair

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2007
    Bradley D. Crow
    Abstract The authors compare the effects of small intestinal submucosa (SIS) treatment to suture repair with respect to histologic and functional outcomes for complete muscle lacerations in a rabbit model. The authors hypothesized that SIS treatment of full-thickness muscle belly lacerations would significantly improve muscle function, strength, and regeneration compared to the current standard-of-care treatment. Muscle belly lacerations were created in the extensor digitorum longus (EDL) of both hind limbs of each rabbit. After randomization, lacerations were left unrepaired (n,=,48) or repaired using a 4-0 Prolene modified Kessler stitch (n,=,48). A flap of SIS graft was sutured into half (n,=,24 each) of the repaired and unrepaired muscles forming four study groups. Suture repair with SIS augmentation of complete muscle lacerations resulted in healed tissue that most closely resembled normal muscle in terms of morphology and function when compared to current standard-of-care treatments. Active force production in this group reached 79% of uninjured controls 12 weeks after surgery. SIS may have important clinical advantages over suture repair alone and warrants further clinical study. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 2007 [source]


    Morphometric analysis of canine skeletal muscles following experimental callus distraction according to the ilizarov method

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2000
    Bernd Fink
    Muscle fiber diameter and fiber-type distribution were analyzed during callus distraction. The right tibia in 24 beagles was lengthened 2.5 cm by callus distraction after osteotomy and application of a ring fixator. Distraction was started at the fifth postoperative day, at a rate of two times for 0.5 mm per day. Twelve dogs that underwent limb-lengthening and three dogs in the control group that did not undergo limb-lengthening were killed at the end of the 25-day distraction phase (group A). The remaining dogs (12 that underwent limb-lengthening and three that did not) were killed after an additional consolidation period of 25 days (group B). The tibialis anterior, extensor digitorum longus, peroneus longus, and gastrocnemius muscles were removed from the right limb (which had undergone distraction) and the left control side of each animal. Crosscut cryostat sections were stained by adenosine triphosphatase at pH 4.3 and 9.4 to determine the size and distribution of types I and II fibers. Morphometric analysis of the muscle fibers was performed by a computer-assisted two-point technique. On the lengthened side, the muscles revealed marked atrophy affecting predominantly type-II fiber in the dogs in group A and affecting both fiber types in dogs in group B. Fiber density increased in both groups. In addition, fiber-type grouping indicative of reinnervation was obvious in group B. Fiber-type distribution in the dogs in group B showed a shift toward type I in the tibialis anterior (p = 0.043) and extensor digitorum longus (p = 0.034) muscles and a shift toward type II in the gastrocnemius (p = 0.038). The data show that tension-stress during tibial lengthening leads to atrophy of type-II fiber, reflecting disuse of muscle fiber in the distraction period as well as neurogenic atrophy followed by the reinnervation processes. Furthermore, the data are consistent with the occurrence of histoneogenesis during limb-lengthening resulting in an increase in fiber density. [source]


    Reduced Nerve Blood Flow In Diabetic Rats Is A Reflection Of Hindlimb Muscle Wasting

    JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 3 2000
    Dr Tomlinson
    We examined the influence of muscle wasting, as a result of streptozotocin-induced diabetes, on sciatic nerve laser Doppler flux (SNLDF), as an index of nerve blood flow, and conduction velocity (NCV). We compared dietary-restricted weight-reduced non-diabetic rats with controls and with diabetic rats and we studied the effects of clenbuterol, an anabolic ,-adrenoceptor agonist, in control and diabetic rats. Dietary restriction reduced the weights of hindlimb muscles,extensor digitorum longus, soleus and gastrocnemius,half as much as did streptozotocin-diabetes and clenbuterol increased muscle weights in control and diabetic rats. This gave a hierarchy of muscle weights in the order,clenbuterol-controls, untreated controls, weight-reduced non-diabetics, clenbuterol-diabetics and untreated diabetics. Diabetes without treatment reduced SNLDF by 51% (p < 0.01); dietary restriction by 25% (p < 0.01) and there were proportional increases associated with clenbuterol treatment. Combined muscle weights regressed closely with SNLDF (r2=0.69; p < 0.001) and, when the latter was expressed relative to muscle weights, a similar value was obtained for all five groups,there were no significant differences. Thus, sciatic nerve blood flow is closely related to hindlimb muscle weight and the effect of diabetes on nerve blood flow may be secondary to muscle wasting. Sciatic/tibialis motor and sensory conduction velocities were also reduced by muscle wasting in the dietary restricted group of non-diabetic rats, but, unlike nerve Doppler flux, it was unaffected by clenbuterol. [source]


    Recovery from fatigue in fast and slow single intact skeletal muscle fibers from aging mouse

    MUSCLE AND NERVE, Issue 9 2001
    Estela González MS
    Abstract In the present work, we studied the recovery from fatigue (RF) of single intact fast- and slow-twitch muscle fibers from young (age 5,7 months) and old (age 22,24 months) mice. To examine whether differences in RF underlie decreases in muscle strength and endurance with aging, we performed in vitro experiments in manually dissected extensor digitorum longus (EDL) and soleus muscle fibers. We measured the recovery of the maximum force every 5 min for a total period of 30 min after inducing fiber fatigue. Fibers were classified, according to the fatigue index, into the following three groups: 0.75,0.99, 0.5,0.74, and <0.5. Although the tetanic tension of EDL and soleus fibers from young and old mice recovered significantly, no statistically significant difference in tension or recovery time was observed between age groups. These data support the concept that the reported decline in muscle force and endurance with aging is not related to changes in RF of individual muscles fibers. © 2001 John Wiley & Sons, Inc. Muscle Nerve 24: 1219,1224 [source]


    Is the efficiency of mammalian (mouse) skeletal muscle temperature dependent?

    THE JOURNAL OF PHYSIOLOGY, Issue 19 2010
    C. J. Barclay
    Myosin crossbridges in muscle convert chemical energy into mechanical energy. Reported values for crossbridge efficiency in human muscles are high compared to values measured in vitro using muscles of other mammalian species. Most in vitro muscle experiments have been performed at temperatures lower than mammalian physiological temperature, raising the possibility that human efficiency values are higher than those of isolated preparations because efficiency is temperature dependent. The aim of this study was to determine the effect of temperature on the efficiency of isolated mammalian (mouse) muscle. Measurements were made of the power output and heat production of bundles of muscle fibres from the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles during isovelocity shortening. Mechanical efficiency was defined as the ratio of power output to rate of enthalpy output, where rate of enthalpy output was the sum of the power output and rate of heat output. Experiments were performed at 20, 25 and 30°C. Maximum efficiency of EDL muscles was independent of temperature; the highest value was 0.31 ± 0.01 (n= 5) at 30°C. Maximum efficiency of soleus preparations was slightly but significantly higher at 25 and 30°C than at 20°C; the maximum mean value was 0.48 ± 0.02 (n= 7) at 25°C. It was concluded that maximum mechanical efficiency of isolated mouse muscle was little affected by temperature between 20 and 30°C and that it is unlikely that differences in temperature account for the relatively high efficiency of human muscle in vivo compared to isolated mammalian muscles. [source]


    Temporal changes in the involvement of pyruvate dehydrogenase complex in muscle lactate accumulation during lipopolysaccharide infusion in rats

    THE JOURNAL OF PHYSIOLOGY, Issue 6 2008
    N. Alamdari
    A characteristic manifestation of sepsis is muscle lactate accumulation. This study examined any putative (causative) association between pyruvate dehydrogenase complex (PDC) inhibition and lactate accumulation in the extensor digitorum longus (EDL) muscle of rats infused with lipopolysaccharide (LPS), and explored the involvement of increased transcription of muscle-specific pyruvate dehydrogenase kinase (PDK) isoenzymes. Conscious, male Sprague,Dawley rats were infused i.v. with saline (0.4 ml h,1, control) or LPS (150 ,g kg,1 h,1) for 2 h, 6 h or 24 h (n= 6,8). Muscle lactate concentration was elevated after 2, 6 and 24 h LPS infusion. Muscle PDC activity was the same at 2 h and 6 h, but was 65% lower after 24 h of LPS infusion (P < 0.01), when there was a 47% decrease in acetylcarnitine concentration (P < 0.05), and a 24-fold increase in PDK4 mRNA expression (P < 0.001). These changes were preceded by marked increases in tumour necrosis factor-, and interleukin-6 mRNA expression at 2 h. The findings indicate that the early (2 and 6 h) elevation in muscle lactate concentration during LPS infusion was not attributable to limited muscle oxygen availability or ATP production (evidenced by unchanged ATP and phosphocreatine (PCr) concentrations) or to PDC inhibition, whereas after 24 h, muscle lactate accumulation appears to have resulted from PDC activation status limiting pyruvate flux, most probably due to cytokine-mediated up-regulation of PDK4 transcription. [source]


    Preconditioning of skeletal muscle against contraction-induced damage: the role of adaptations to oxidants in mice

    THE JOURNAL OF PHYSIOLOGY, Issue 1 2004
    F. McArdle
    Adaptations of skeletal muscle following exercise are accompanied by changes in gene expression, which can result in protection against subsequent potentially damaging exercise. One cellular signal activating these adaptations may be an increased production of reactive oxygen and nitrogen species (ROS). The aim of this study was to examine the effect of a short period of non-damaging contractions on the subsequent susceptibility of muscle to contraction-induced damage and to examine the changes in gene expression that occur following the initial contraction protocol. Comparisons with changes in gene expression in cultured myotubes following treatment with a non-damaging concentration of hydrogen peroxide (H2O2) were used to identify redox-sensitive genes whose expression may be modified by the increased ROS production during contractions. Hindlimb muscles of mice were subjected to a preconditioning, non-damaging isometric contraction protocol in vivo. After 4 or 12 h, extensor digitorum longus (EDL) and soleus muscles were removed and subjected to a (normally) damaging contraction protocol in vitro. Muscles were also analysed for changes in gene expression induced by the preconditioning protocol using cDNA expression techniques. In a parallel study, C2C12 myotubes were treated with a non-damaging concentration (100 ,m) of H2O2 and, at 4 and 12 h following treatment, myotubes were treated with a damaging concentration of H2O2 (2 mm). Myotubes were analysed for changes in gene expression at 4 h following treatment with 100 ,m H2O2 alone. Data demonstrate that a prior period of non-damaging contractile activity resulted in significant protection of EDL and soleus muscles against a normally damaging contraction protocol 4 h later. This protection was associated with significant changes in gene expression. Prior treatment of myotubes with a non-damaging concentration of H2O2 also resulted in significant protection against a damaging treatment, 4 and 12 h later. Comparison of changes in gene expression in both studies identified haem oxygenase-1 as the sole gene showing increased expression during adaptation in both instances suggesting that activation of this gene results from the increased ROS production during contractile activity and that it may play a role in protection of muscle cells against subsequent exposure to damaging activity. [source]


    Reversible changes in Ca2+ -activation properties of rat skeletal muscle exposed to elevated physiological temperatures

    THE JOURNAL OF PHYSIOLOGY, Issue 3 2002
    Chris van der Poel
    Exposure of relaxed rat extensor digitorum longus (EDL; predominantly fast-twitch) muscle to temperatures in the upper physiological range for mammalian skeletal muscle (43-46 °C) led to reversible alterations of the contractile activation properties. These properties were studied using the mechanically skinned fibre preparation activated in Ca2+ -buffered solutions. The maximum Ca2+ -activated force (maximum force per cross-sectional area) and the steepness of force-pCa (-log10[Ca2+]) curves as measured by the Hill coefficient (nH) reversibly decreased by factors of 8 and 2.5, respectively, when the EDL muscle was treated at 43 °C for 30 min and 5 and 2.8, respectively, with treatment at 46 °C for 5 min. Treatment at 47 °C for 5 min produced an even more marked depression in maximum specific force, which fully recovered after treatment, and in the Hill coefficient, which did not recover after treatment. After all temperature treatments there was no change in the level of [Ca2+] at which 50 % maximum force was generated. The temperature-induced depression in force production and steepness of the force-pCa curves were shown to be associated with superoxide (O2,) production in muscle (apparent rate of O2, production at room temperature, 0.055 ± 0.008 nmol min,1 (g wet weight),1; and following treatment to 46 °C for 5 min, 1.8 ± 0.2 nmol min,1 (g wet weight),1) because 20 mm Tiron, a membrane-permeant O2, scavenger, was able to markedly suppress the net rate of O2, production and prevent any temperature-induced depression of contractile parameters. The temperature-induced depression in force production of the contractile apparatus could be reversed either by allowing the intact muscle to recover for 3-4 h at room temperature or by treatment of the skinned fibre preparation with dithiothreitol (a potent reducing agent) in the relaxing solution. These results demonstrate that mammalian skeletal muscle has the ability to uncouple force production reversibly from the activator Ca2+ as the temperature increases in the upper physiological range through an increase in O2, production. [source]


    Muscle magnetic resonance imaging shows distinct diagnostic patterns in Welander and tibial muscular dystrophy

    ACTA NEUROLOGICA SCANDINAVICA, Issue 2 2004
    I. Mahjneh
    Objectives , This is a report on a retrospective muscle magnetic resonance imaging (MRI) study on 11 patients affected by Welander distal myopathy (WDM) and 22 patients with tibial muscular dystrophy (TMD) carried out in order to define the pattern and characteristics of muscle involvement. Results , WDM patients showed involvement of gastrocnemius, soleus, tibial anterior (TA) and extensor digitorum longus (EDL), as well as hamstrings and hip adductor muscles. TMD patients showed involvement of the TA and EDL muscles, and in some patients also hamstring and posterior compartment muscles of the legs. Some patients showed asymmetry of muscle involvement. Conclusion , We conclude that muscle MRI examination proved to be very useful in the determination of the exact pattern of muscle involvement in WDM and TMD. Clinical testing using the Medical Research Council scale is not sensitive enough to establish the pattern of muscle involvement in focal muscle diseases. [source]


    Fibularis tertius: Revisiting the anatomy

    CLINICAL ANATOMY, Issue 8 2007
    K. Rourke
    Abstract Fibularis tertius (FT) may be used during reconstructive surgery and muscle transposition with retention of function. The muscle was examined in both lower limbs of 41 cadavers. Measurements were made of muscle belly length and width, tendon length and width, and the size of the origin on the fibula. Tendon insertion, nerve and blood supplies were also examined. FT was absent in five (6.1%) lower limbs of three (7.3%) subjects. The size of its origin demonstrated inter- and intra-individual variation. FT arose from the distal fibula and on average occupied (28.4 ± 9.1)% (mean ± S. D.) of the total shaft length. In all cases the tendon inserted into the dorsal surface of the shafts of both the fourth and fifth metatarsals. A small nerve branch consistently arose from the deep fibular nerve near the origin of extensor digitorum longus. The nerve ran parallel to the length of this muscle, between it and extensor hallucis longus, before piercing FT. Anatomy textbooks describe FT as inserting into the fifth metatarsal only. This study, supported by data from previous reports, suggests that the "textbook" accounts of FT should be updated to record that most commonly its tendon reaches both the fourth and fifth metatarsals. Clin. Anat. 20:946,949, 2007. © 2007 Wiley-Liss, Inc. [source]


    Inhibition of calcineurin increases monocarboxylate transporters 1 and 4 protein and glycolytic enzyme activities in rat soleus muscle

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 3 2005
    Masataka Suwa
    SUMMARY 1.,The present study was designed to examine the role of calcineurin in muscle metabolic components by the administration of the specific calcineurin inhibitor cyclosporine A (CsA) to rats. 2.,Male Wistar rats were divided into either a CsA-treated group (CT) or a vehicle-treated group (VT). Cyclosporine A was administered subcutaneously to rats at a rate of 25 mg/kg bodyweight per day for 10 successive days. Thereafter, changes in muscle enzyme activities and glucose transporter (GLUT)-4 and monocarboxylate transporter (MCT)-1 and MCT-4 proteins in the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles were examined. 3.,There was a significant increase in MCT-1 and MCT-4 proteins in the soleus muscle in the CT group, but not in the EDL muscle. The activities of hexokinase, pyruvate kinase and lactate dehydrogenase in the soleus muscle also increased significantly in the CT group, but a similar increase in enzyme activity was not seen in EDL muscle. The activities of citrate synthase or malate dehydrogenase and the GLUT-4 protein content were not altered by CsA treatment in either the soleus or EDL muscles. 4.,These results seem to imply that calcineurin negatively regulates the components of glucose/lactate metabolism, except for GLUT-4, especially in slow-twitch muscle. [source]


    Endurance training adaptations modulate the redox,force relationship of rat isolated slow-twitch skeletal muscles

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1-2 2003
    David R Plant
    Summary 1.,Studies have shown that, in isolated skeletal muscles, maximum isometric force production (Po) is dependent on muscle redox state. Endurance training increases the anti-oxidant capacity of skeletal muscles, a factor that could impact on the force-producing capacity following exogenous exposure to an oxidant. We tested the hypothesis that 12 weeks treadmill training would increase anti-oxidant capacity in rat skeletal muscles and alter their response to exogenous oxidant exposure. 2.,At the conclusion of the 12 week endurance-training programme, soleus (slow-twitch) muscles from trained rats had greater citrate synthase (CS) and catalase (CAT) activity compared with soleus muscles from untrained rats (P < 0.05). In contrast, CAT activity of extensor digitorum longus (EDL; fast-twitch) muscles from trained rats was not different to EDL muscles of untrained rats. The CS activity was lower in EDL muscles from trained compared with untrained rats (P < 0.05). 3.,Equilibration with exogenous hydrogen peroxide (H2O2, 5 mmol/L) increased the Po of soleus muscles from untrained rats for the duration of treatment (30 min), whereas the Po of EDL muscles was affected biphasically, with a small increase initially (after 5 min), followed by a more marked decrease in Po (after 30 min). The H2O2 -induced increase in Po of soleus muscles from trained rats was less than that in untrained rats (P < 0.05), but no differences were observed in the Po of EDL muscles following training. 4.,The results indicate that 12 weeks endurance running training conferred adaptations in soleus but not EDL muscles. These adaptations were associated with an attenuation of the oxidant-induced increase in Po of soleus muscles from trained compared with untrained rats. We conclude that endurance training-adapted soleus muscles have a slightly altered redox,force relationship. [source]