Extends Lifespan (extend + lifespan)

Distribution by Scientific Domains


Selected Abstracts


Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans

AGING CELL, Issue 2 2009
Eric L. Greer
Summary Dietary restriction (DR) has the remarkable ability to extend lifespan and healthspan. A variety of DR regimens have been described in species ranging from yeast to mammals. However, whether different DR regimens extend lifespan via universal, distinct, or overlapping pathways is still an open question. Here we examine the genetic pathways that mediate longevity by different DR regimens in Caenorhabditis elegans. We have previously shown that the low-energy sensing AMP-activated protein kinase AMPK/aak-2 and the Forkhead transcription factor FoxO/daf-16 are necessary for longevity induced by a DR regimen that we developed (sDR). Here we find that AMPK and FoxO are necessary for longevity induced by another DR regimen, but are dispensable for the lifespan extension induced by two different DR methods. Intriguingly, AMPK is also necessary for the lifespan extension elicited by resveratrol, a natural polyphenol that mimics some aspects of DR. Conversely, we test if genes previously reported to mediate longevity by a variety of DR methods are necessary for sDR-induced longevity. Although clk-1, a gene involved in ubiquinone biosynthesis, is also required for sDR-induced lifespan extension, we find that four other genes (sir-2.1, FoxA/pha-4, skn-1, and hsf-1) are all dispensable for longevity induced by sDR. Consistent with the observation that different DR methods extend lifespan by mostly independent genetic mechanisms, we find that the effects on lifespan of two different DR regimens are additive. Understanding the genetic network by which different DR regimens extend lifespan has important implications for harnessing the full benefits of DR on lifespan and healthspan. [source]


Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans

AGING CELL, Issue 1 2007
Malene Hansen
Summary Many conditions that shift cells from states of nutrient utilization and growth to states of cell maintenance extend lifespan. We have carried out a systematic lifespan analysis of conditions that inhibit protein synthesis. We find that reducing the levels of ribosomal proteins, ribosomal-protein S6 kinase or translation-initiation factors increases the lifespan of Caenorhabditis elegans. These perturbations, as well as inhibition of the nutrient sensor target of rapamycin (TOR), which is known to increase lifespan, all increase thermal-stress resistance. Thus inhibiting translation may extend lifespan by shifting cells to physiological states that favor maintenance and repair. Interestingly, different types of translation inhibition lead to one of two mutually exclusive outputs, one that increases lifespan and stress resistance through the transcription factor DAF-16/FOXO, and one that increases lifespan and stress resistance independently of DAF-16. Our findings link TOR, but not sir-2.1, to the longevity response induced by dietary restriction (DR) in C. elegans, and they suggest that neither TOR inhibition nor DR extends lifespan simply by reducing protein synthesis. [source]


Insulin-like signalling in neurons controls lifespan in C. elegans

JOURNAL OF NEUROCHEMISTRY, Issue 2002
C. A. Wolkow
Insulin-like signalling controls C. elegans lifespan, development and metabolism. Mutations that weaken this insulin-like signalling pathway extend lifespan. Severe mutations abolishing insulin-like signalling cause animals to arrest development as dauer larvae, a larval form specialized for stress resistance and long-term survival. A number of the genes acting in this pathway have been cloned, including daf-2, which encodes a homolog of vertebrate insulin/IGF-I receptors, and age-1, encoding the C. elegans homolog of the PI(3)K p110 catalytic subunit. In order to identify cells from which insulin-like signalling controls lifespan and development, transgenic animals were constructed which possessed insulin-like signalling only in specific cell types. To achieve this, cell-type specific promoters were used to drive expression of daf-2 or age-1 cDNAs in daf-2(,/,) or age-1(,/,) backgrounds, respectively. By utilizing this strategy, we could restore wild-type daf-2 or age-1 activity only in cells that are capable of expressing each transgene. Restoring insulin-like signalling to the nervous system of daf-2 or age-1 mutants could rescue long lifespan. This result was specific for transgenes restoring insulin-like signalling to the nervous system. Expressing daf-2 or age-1 cDNAs from muscle- or intestinally-restricted promoters was insufficient to rescue lifespan. In contrast, age-1 and daf-2 expression in either neuronal or non-neuronal cell types rescued dauer larval arrest in the mutants. These findings demonstrate that insulin-like signalling pathways in the nervous system control C. elegans lifespan. [source]


Cyclophilin D links programmed cell death and organismal aging in Podospora anserina

AGING CELL, Issue 5 2010
Diana Brust
Summary Cyclophilin D (CYPD) is a mitochondrial peptidyl prolyl- cis,trans -isomerase involved in opening of the mitochondrial permeability transition pore (mPTP). CYPD abundance increases during aging in mammalian tissues and in the aging model organism Podospora anserina. Here, we show that treatment of the P. anserina wild-type with low concentrations of the cyclophilin inhibitor cyclosporin A (CSA) extends lifespan. Transgenic strains overexpressing PaCypD are characterized by reduced stress tolerance, suffer from pronounced mitochondrial dysfunction and are characterized by accelerated aging and induction of cell death. Treatment with CSA leads to correction of mitochondrial function and lifespan to that of the wild-type. In contrast, PaCypD deletion strains are not affected by CSA within the investigated concentration range and show increased resistance against inducers of oxidative stress and cell death. Our data provide a mechanistic link between programmed cell death (PCD) and organismal aging and bear implications for the potential use of CSA to intervene into biologic aging. [source]


DILP-producing median neurosecretory cells in the Drosophila brain mediate the response of lifespan to nutrition

AGING CELL, Issue 3 2010
Susan J. Broughton
Summary Dietary restriction extends lifespan in diverse organisms, but the gene regulatory mechanisms and tissues mediating the increased survival are still unclear. Studies in worms and flies have revealed a number of candidate mechanisms, including the target of rapamycin and insulin/IGF-like signalling (IIS) pathways and suggested a specific role for the nervous system in mediating the response. A pair of sensory neurons in Caenorhabditis elegans has been found to specifically mediate DR lifespan extension, but a neuronal focus in the Drosophila nervous system has not yet been identified. We have previously shown that reducing IIS via the partial ablation of median neurosecretory cells in the Drosophila adult brain, which produce three of the seven fly insulin-like peptides, extends lifespan. Here, we show that these cells are required to mediate the response of lifespan to full feeding in a yeast dilution DR regime and that they appear to do so by mechanisms that involve both altered IIS and other endocrine effects. We also present evidence of an interaction between these mNSCs, nutrition and sleep, further emphasising the functional homology between the DILP-producing neurosecretory cells in the Drosophila brain and the hypothalamus of mammals in their roles as integration sites of many inputs for the control of lifespan and behaviour. [source]


Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice

AGING CELL, Issue 1 2010
James R. Mitchell
Summary Dietary restriction (DR) extends lifespan and increases resistance to multiple forms of stress, including ischemia reperfusion injury to the brain and heart in rodents. While maximal effects on lifespan require long-term restriction, the kinetics of onset of benefits against acute stress is not known. Here, we show that 2,4 weeks of 30% DR improved survival and kidney function following renal ischemia reperfusion injury in mice. Brief periods of water-only fasting were similarly effective at protecting against ischemic damage. Significant protection occurred within 1 day, persisted for several days beyond the fasting period and extended to another organ, the liver. Protection by both short-term DR and fasting correlated with improved insulin sensitivity, increased expression of markers of antioxidant defense and reduced expression of markers of inflammation and insulin/insulin-like growth factor-1 signaling. Unbiased transcriptional profiling of kidneys from mice subject to short-term DR or fasting revealed a significant enrichment of signature genes of long-term DR. These data demonstrate that brief periods of reduced food intake, including short-term daily restriction and fasting, can increase resistance to ischemia reperfusion injury in rodents and suggest a rapid onset of benefits of DR in mammals. [source]


Calorie restriction reduces rDNA recombination independently of rDNA silencing

AGING CELL, Issue 6 2009
Michèle Riesen
Summary Calorie restriction (CR) extends lifespan in yeast, worms, flies and mammals, suggesting that it acts via a conserved mechanism. In yeast, activation of the NAD-dependent histone deacetylase, Sir2, by CR is thought to increase silencing at the ribosomal DNA, thereby reducing the recombination-induced generation of extrachromosomal rDNA circles, hence increasing replicative lifespan. Although accumulation of extrachromosomal rDNA circles is specific to yeast aging, it is thought that Sirtuin activation represents a conserved longevity mechanism through which the beneficial effects of CR are mediated in various species. We show here that growing yeast on 0.05 or 0.5% glucose (severe and moderate CR, respectively) does not increase silencing at either sub-telomeric or rDNA loci compared with standard (2% glucose) media. Furthermore, rDNA silencing was unaffected in the hxk2,, sch9, and tor1, genetic mimics of CR, but inhibited by FOB1 deletion. All these interventions extend lifespan in multiple yeast backgrounds, revealing a poor correlation between rDNA silencing and longevity. In contrast, CR and deletion of the FOB1, HXK2, SCH9 and TOR1 genes, all significantly reduced rDNA recombination. This silencing-independent mechanism for suppressing rDNA recombination may therefore contribute to CR-mediated lifespan extension. [source]


p53/CEP-1 increases or decreases lifespan, depending on level of mitochondrial bioenergetic stress

AGING CELL, Issue 4 2009
Natascia Ventura
Summary Mitochondrial pathologies underlie a number of life-shortening diseases in humans. In the nematode Caenorhabditis elegans, severely reduced expression of mitochondrial proteins involved in electron transport chain-mediated energy production also leads to pathological phenotypes, including arrested development and/or shorter life; in sharp contrast, mild suppression of these same proteins extends lifespan. In this study, we show that the C. elegans p53 ortholog cep-1 mediates these opposite effects. We found that cep-1 is required to extend longevity in response to mild suppression of several bioenergetically relevant mitochondrial proteins, including frataxin , the protein defective in patients with Friedreich's Ataxia. Importantly, we show that cep-1 also mediates both the developmental arrest and life shortening induced by severe mitochondrial stress. These findings support an evolutionarily conserved function for p53 in modulating organismal responses to mitochondrial dysfunction and suggest that metabolic checkpoint responses may play a role in longevity control and in human mitochondrial-associated diseases. [source]


Transcriptional response to aging and caloric restriction in heart and adipose tissue

AGING CELL, Issue 5 2007
Nancy J. Linford
Summary Sustained caloric restriction (CR) extends lifespan in animal models but the mechanism and primary tissue target(s) have not been identified. Gene expression changes with aging and CR were examined in both heart and white adipose tissue (WAT) of Fischer 344 (F344) male rats using Affymetrix® RAE 230 arrays and validated by quantitative reverse transcriptase,polymerase chain reaction (qRT-PCR) on 18 genes. As expected, age had a substantial effect on transcription on both tissues, although only 21% of cardiac age-associated genes were also altered in WAT. Gene set enrichment analysis revealed coordinated small magnitude changes in ribosomal, proteasomal, and mitochondrial genes with similarities in aging between heart and WAT. CR had very different effects on these two tissues at the transcriptional level. In heart, very few age-associated expression changes were affected by CR, while in WAT, CR suppressed a substantial subset of the age-associated changes. Genes unaltered by aging but altered by CR were identified in WAT but not heart. Most interestingly, we identified a gene expression signature associated with mammalian target of rapamycin (mTOR) activity that was down-regulated with age but preserved by CR in both WAT and heart. In addition, lipid metabolism genes, particularly those associated with peroxisome proliferator-activated receptor , (PPAR,)-mediated adipogenesis were reduced with age but preserved with CR in WAT. These results highlight tissue-specific differences in the gene expression response to CR and support a role for CR-mediated preservation of mTOR activity and adipogenesis in aging WAT. [source]