Home About us Contact | |||
Exploratory Activity (exploratory + activity)
Selected AbstractsMorphological correlates of burst speed and field movement patterns: the behavioural adjustment of locomotion in wall lizards (Podarcis muralis)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2003FLORENTINO BRAÑA Locomotion of lizards has clear morphological determinants and is important for developing activities such as feeding, social interaction and predator avoidance. Thus, morphological variation is believed to have fitness consequences through affecting locomotor performance. This paper firstly evaluates the dependence of burst speed on morphology, and secondly examines the movement patterns of free-ranging undisturbed wall lizards (Podarcis muralis) engaged in several kinds of activity. Body size was the most important correlate of burst speed as performed at the optimal temperature for running in the laboratory. After removing size effects from performance and morphological traits, the length of some particular limb segments had positive influence on burst speed, but these effects were weak, each trait explaining less than 16% of variance in burst speed. Free-ranging P. muralis exhibited intermittent locomotion, with movement sequences interrupted by frequent short pauses. Field movement patterns greatly differed depending upon the kind of activity and were in most aspects independent of the size and sex of the animal. P. muralis involved in thermoregulation performed short and low-speed displacements; exploratory activities were characterized by frequent, slow and short movements. On the contrary, lizards involved in intraspecific pursuits and predator escape developed comparatively high speeds, although only exceptionally did they attain the size-specific burst speed predicted from the laboratory trials. Speed of escape increased with distance to the refuge and the animals are able to assess predation risks to modulate approach distance, speed and pauses, so maximum exertion is seldom required. The evolution of locomotor capacities exceeding routine needs is discussed in the context of the principle of ,excessive construction'. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80, 135,146. [source] Impaired behavioural flexibility and memory in mice lacking GDNF family receptor ,2EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2004Vootele Võikar Abstract The glial cell line-derived neurotrophic factor (GDNF) family receptor GFR,2 is the binding receptor for neurturin (NRTN). The main biological responses of GFR,2 are mediated via the Ret receptor tyrosine kinase, although it may also signal independently of Ret via the neural cell adhesion molecule NCAM. GFR,2 is expressed in many neurons of both the central and peripheral nervous system. Mice lacking GFR,2 receptors do not exhibit any gross defects in the central nervous system structure. However, they display profound deficits in the parasympathetic and enteric nervous system, accompanied by significant reduction in body weight after weaning. Here we present the results of behavioural analysis of the GFR,2-knockout mice. The knockout mice did not differ from wild-type mice in basic tests of motor and exploratory activity. However, differences were established in several memory tasks. The knockout mice were not impaired in the acquisition of spatial escape strategy. However, the deficit in flexibility in establishing a new strategy was revealed during reversal learning with the platform in the opposite quadrant of the pool. Furthermore, the knockout mice displayed significant impairment in contextual fear conditioning and conditioned taste aversion tests of memory. The results suggest that GFR,2 signalling plays a role in the development or maintenance of cognitive abilities that help in solving complex learning tasks. [source] Mice with astrocyte-directed inactivation of connexin43 exhibit increased exploratory behaviour, impaired motor capacities, and changes in brain acetylcholine levelsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2003Christian Frisch Abstract Gap junctions mediate communication between many cell types in the brain. Gap junction channels are composed of membrane-spanning connexin (Cx) proteins, allowing the cell-to-cell passage of small ions and metabolites. Cx43 is the main constituent of the brain-spanning astrocytic gap junctional network, controlling activity-related changes in ion and glutamate concentrations as well as metabolic processes. In astrocytes, deletion of Cx43-coding DNA led to attenuated gap junctional coupling and impaired propagation of calcium waves, known to influence neuronal activity. Investigation of the role of Cx43 in behaviour has been impossible so far, due to postnatal lethality of its general deletion. Recently, we have shown that deletion of Cx30, which is also expressed by astrocytes, affects exploration, emotionality, and neurochemistry in the mouse. In the present study, we investigated the effects of the astrocyte-directed inactivation of Cx43 on mouse behaviour and brain neurochemistry. Deletion of Cx43 in astrocytes increased exploratory activity without influencing habituation. In the open field, but not in the elevated plus-maze, an anxiolytic-like effect was observed. Rotarod performance was initially impaired, but reached control level after further training. In the water maze, Cx43 deficient mice showed a steeper learning course, although final performance was similar between groups. Cx43 inactivation in astrocytes increased acetylcholine content in the frontal cortex of water maze-trained animals. Results are discussed in terms of altered communication between astrocytes and neurons, possible compensation processes, and differential effects of Cx30- and astrocyte-specific Cx43 deletion. [source] Long-lasting hippocampal potentiation and contextual memory consolidationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2001Benedetto Sacchetti Abstract In order to ascertain whether there are hippocampal electrophysiological modifications specifically related to memory, exploratory activity and emotional stress, extracellular electrical activity was recorded in hippocampal slices prepared from the brains of male adult rats. Several groups of animals were employed: (i) rats which had freely explored the experimental apparatus (8 min exposure); (ii) rats which had been subjected, in the same apparatus, to a fear conditioning paradigm training entailing the administration of aversive electrical footshocks (8 min exposure); (iii) rats to which the same number of aversive shocks had been administered in the same apparatus, but temporally compressed so as to make difficult the association between painful stimuli and the apparatus (30 s exposure); (iv) naïve rats never placed in the apparatus. Half of the rats from each treatment group were used for retrieval testing and the other half for hippocampal excitability testing. The conditioned freezing response was exhibited for no less than 4 weeks. Hippocampal excitability was measured by means of input,output curves (IOC) and paired-pulse facilitation curves (PPF). Retrieval testing or brain slices preparation were performed at increasing delays after the training sessions: immediately afterwards or after 1, 7 or 28 days. Only the rats subjected to the fear conditioning training exhibited freezing when placed again in the apparatus (retrieval testing). It was found that IOCs, with respect to naïve rats, increased in the conditioned animals up to the 7-day delay. In free exploration animals the IOCs increased only immediately after the training session. In all other rats no modification of the curves was observed. IOC increases do not appear to imply presynaptic transmitter release modifications, because they were not accompanied by PPF modifications. In conclusion, a clear-cut correlation was found between the increase in excitability of the Schaffer collateral,CA1 dendrite synapses and freezing response consolidation. [source] Response of extracelluar zinc in the ventral hippocampus against novelty stressJOURNAL OF NEUROCHEMISTRY, Issue 2 2006Atsushi Takeda Abstract An extensive neuronal activity takes place in the hippocampus during exploratory behavior. However, the role of hippocampal zinc in exploratory behavior is poorly understood. To analyze the response of extracellular zinc in the hippocampus against novelty stress, rats were placed for 50 min in a novel environment once a day for 8 days. Extracellular glutamate in the hippocampus was increased during exploratory behavior on day 1, whereas extracellular zinc was decreased. The same phenomenon was observed during exploratory behavior on day 2 and extracellular zinc had returned to the basal level during exploratory behavior on day 8. To examine the significance of the decrease in extracellular zinc in exploratory activity, exploratory behavior was observed during perfusion with 1 mm CaEDTA, a membrane-impermeable zinc chelator. Locomotor activity in the novel environment was decreased by perfusion with CaEDTA. The decrease in extracellular zinc and the increase in extracellular glutamate in exploratory period were abolished by perfusion with CaEDTA. These results suggest that zinc uptake by hippocampal cells is linked to exploratory activity and is required for the activation of the glutamatergic neurotransmitter system. The zinc uptake may be involved in the response to painless psychological stress or in the cognitive processes. [source] |