Home About us Contact | |||
Experimental Pneumococcal Meningitis (experimental + pneumococcal_meningitis)
Selected AbstractsMorphological Correlates of Acute and Permanent Hearing Loss During Experimental Pneumococcal MeningitisBRAIN PATHOLOGY, Issue 2 2003Matthias Klein In patients with acute bacterial meningitis, hearing loss can be transient but is often permanent. The mechanisms underlying meningitis-associated hearing loss are not fully understood. Therefore, we investigated the morphological correlates of hearing loss in a rat model of pneumococcal meningitis. Transcutaneous intracisternal injection of Streptococcus pneumoniae resulted in a dose-dependent hearing loss (determined by auditory brainstem response audiometry), which was partially reversible during the acute stage. Nevertheless, a severe permanent hearing loss persisted until 2 weeks after infection. Suppurative labyrinthitis was accompanied by blood-labyrinth barrier disruption (determined by cochlear Evans blue extravasation), which correlated closely with hearing loss during the acute stage but not after recovery. Two weeks after infection, spiral ganglion neuronal density was markedly decreased and correlated with the severity of permanent hearing loss. Neuronal loss can be explained by the new finding of meningitis-associated spiral ganglion neuronal necrosis rather than apop-tosis (determined by morphology, TUNEL staining, and immunohistochemistry). [source] Transcriptional Regulation of Caspases in Experimental Pneumococcal MeningitisBRAIN PATHOLOGY, Issue 3 2001Matthias von Mering Apoptosis and necrosis in brain account for neurological sequelae in survivors of bacterial meningitis. In meningitis, several mechanisms may trigger death pathways leading to activation of transcription factors regulating caspases mRNA synthesis. Therefore, we used a multiprobe RNA protection assay (RPA) to examine the expression of 9 caspase-mRNA in the course of experimental Streptococcus pneumoniae meningitis in mouse brain. Caspase-6, -7 and -11 mRNA were elevated 6 hours after infection. 12 hours after infection caspases-1, -2, -8 and -12 mRNA rose. Caspase-14 mRNA was elevated 18 h and caspase-3 mRNA 24 h after infection. In situ hybridization detected caspases-3, -8, -11 and -12 mRNA in neurons of the hippocampal formation and neocortex. Development of sepsis was paralleled by increased transcription of caspases mRNA in the spleen. In TNF,-deficient mice all caspases examined were less upregulated, in TNF-receptor 1/2 knockout mice caspases-1, -2, -7, -11 and -14 mRNA were increased compared to infected control animals. In caspase-1 deficient mice, caspases-11, and -12 mRNA levels did not rise in meningitis indicating the necessity of caspase-1 activating these caspases. Hippocampal formations of newborn mice incubated with heat-inactivated S. pneumoniae R6 showed upregulation of caspase-1, -3, -11 and -12 mRNA. These observations suggest a tightly regulated caspases network at the transcriptional level in addition to the known cascade at the protein level. [source] Systemic steroid reduces long-term hearing loss in experimental pneumococcal meningitis,THE LARYNGOSCOPE, Issue 9 2010Lise Worsøe MD Abstract Objectives/Hypothesis: Sensorineural hearing loss is a common complication of pneumococcal meningitis. Treatment with corticosteroids reduces inflammatory response and may thereby reduce hearing loss. However, both experimental studies and clinical trials investigating the effect of corticosteroids on hearing loss have generated conflicting results. The objective of the present study was to determine whether systemic steroid treatment had an effect on hearing loss and cochlear damage in a rat model of pneumococcal meningitis. Study Design: Controlled animal study of acute bacterial meningitis. Methods: Adult rats were randomly assigned to two experimental treatment groups: a group treated with systemic steroid (n = 13) and a control group treated with saline (n = 13). Treatment was initiated 21 hours after infection and repeated once a day for three days. Hearing loss and cochlear damage were assessed by distortion product otoacoustic emissions (DPOAE), auditory brainstem response (ABR) at 16 kHz, and spiral ganglion neuron density. Results: Fifty-six days after infection, steroid treatment significantly reduced hearing loss assessed by DPOAE (P < .05; Mann-Whitney) and showed a trend toward reducing loss of viable neurons in the spiral ganglion (P = .0513; Mann-Whitney). After pooling data from day 22 with data from day 56, we found that systemic steroid treatment significantly reduced loss of spiral ganglion neurons (P = .0098; Mann-Whitney test). Conclusions: Systemic steroid treatment reduces long-term hearing loss and loss of spiral ganglion neurons in experimental pneumococcal meningitis in adult rats. The findings support a beneficial role of anti-inflammatory agents in reducing hearing loss and cochlear damage in meningitis. Laryngoscope, 2010 [source] |