Experimental Details (experimental + detail)

Distribution by Scientific Domains


Selected Abstracts


Shear properties of epoxy under high strain rate loading

POLYMER ENGINEERING & SCIENCE, Issue 4 2010
Niranjan K. Naik
Shear properties of epoxy LY 556 under high strain rate loading are presented. Torsional Split Hopkinson Bar apparatus was used for the studies in the shear strain rate range of 385,880 per sec. Experimental details, specimen configuration and development, data acquisition, and processing are presented. Shear strength, shear modulus, and ultimate shear strain are presented as a function of shear strain rate. For comparison, studies are presented at quasi-static loading. It is observed that the shear strength at high strain rate is enhanced up to 45% compared with that at quasi-static loading in the range of parameters considered. Further, it is observed that, in the range of parameters considered, the change in shear properties with the change in shear strain rate is not significant. Comparison of torque versus time behavior derived from signals obtained from strain gauges mounted on incident bar and transmitter bar is also presented. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers [source]


Experimental autoimmune cholangitis: a mouse model of immune-mediated cholangiopathy

LIVER INTERNATIONAL, Issue 5 2000
David E. J. Jones
Abstract:Background: Primary biliary cirrhosis (PBC) is characterised by intra-hepatic immune-mediated cholangiopathy (non-suppurative destructive cholangitis (NSDC)). Although auto-reactive immune responses against pyruvate dehydrogenase complex (PDC) have been characterised in PBC, the lack of an animal model of the disease has limited study of the mechanisms of disease induction and the development of novel approaches to therapy. Aims: To develop and validate a mouse model of immune-mediated cholangiopathy relevant for future use in the study of the aetio-pathogenesis and therapy of PBC. Methods: Female SJL/J, C57BL/6, NOD and BALB/c mice were sensitised with PDC, its purified E2/E3BP component, and a PDC-E2 derived peptide p163 (a dominant T-cell epitope in humans) in complete Freund's adjuvant (CFA). Morphological changes were assessed under light microscopy by a hepatic histopathologist blinded to the experimental details. Antibody responses to PDC were studied by ELISA and PDC inhibition assay. Results: An initial series of experiments was performed to survey the susceptibility of female mice of a range of strains to the induction of NSDC by i.p. sensitisation with PDC, PDC-E2/E3BP or p163 in CFA. Although each animal showed a specific antibody response following sensitisation, it was found that NSDC development (assessed at 30 weeks post-sensitisation) was restricted to SJL/J mice following sensitisation with any of the mitochondrial antigen preparations. A subsequent series of experiments was performed to examine the specificity and aetiology of this disease. Significant bile duct lesions were only seen in SJL/J animals following sensitisation with CFA containing PDC, and were absent from CFA only and un-sensitised controls. Kinetic analysis revealed that this pathology developed slowly, but a high incidence of animals with severe lesions was observed after 30 weeks. Conclusions: We have described a model of experimental autoimmune cholangitis (EAC) with immunological (anti-PDC antibodies) and histological (immune-mediated cholangiopathy) features suggestive of PBC. This model may be useful in further defining the role of self-tolerance breakdown in the development of this condition. [source]


Shotgun lipidomics: Electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples

MASS SPECTROMETRY REVIEWS, Issue 3 2005
Xianlin Han
Abstract Lipidomics, after genomics and proteomics, is a newly and rapidly expanding research field that studies cellular lipidomes and the organizational hierarchy of lipid and protein constituents mediating life processes. Lipidomics is greatly facilitated by recent advances in, and novel applications of, electrospray ionization mass spectrometry (ESI/MS). In this review, we will focus on the advances in ESI/MS, which have facilitated the development of shotgun lipidomics and the utility of intrasource separation as an enabling strategy for utilization of 2D mass spectrometry in shotgun lipidomics of biological samples. The principles and experimental details of the intrasource separation approach will be extensively discussed. Other ESI/MS approaches towards the quantitative analyses of global cellular lipidomes directly from crude lipid extracts of biological samples will also be reviewed and compared. Multiple examples of lipidomic analyses from crude lipid extracts employing these approaches will be given to show the power of ESI/MS techniques in lipidomics. Currently, modern society is plagued by the sequelae of lipid-related diseases. It is our hope that the integration of these advances in multiple disciplines will catalyze the development of lipidomics, and such development will lead to improvements in diagnostics and therapeutics, which will ultimately result in the extended longevity and an improved quality of life for humankind. © 2004 Wiley Periodicals, Inc., Mass Spec Rev 24:367,412, 2005 [source]


Understanding surfaces and buried interfaces of polymer materials at the molecular level using sum frequency generation vibrational spectroscopy

POLYMER INTERNATIONAL, Issue 5 2007
Zhan Chen
Abstract This paper reviews recent progress in the studies on polymer surfaces/interfaces using sum frequency generation (SFG) vibrational spectroscopy. SFG theory, technique, and some experimental details have been presented. The review is focused on the SFG studies on buried interfaces involving polymer materials, such as polymer,water interfaces and polymer,polymer interfaces. Molecular interactions between polymer surfaces and adhesion promoters as well as biological molecules such as proteins and peptides have also been elucidated using SFG. This review demonstrates that SFG is a powerful technique to characterize molecular level structural information of complicated polymer surfaces and interfaces in situ. Copyright © 2006 Society of Chemical Industry [source]


Comparison between micellar liquid chromatography and capillary zone electrophoresis for the determination of hydrophobic basic drugs in pharmaceutical preparations

BIOMEDICAL CHROMATOGRAPHY, Issue 1 2007
S. Torres-Cartas
Abstract The determination of highly hydrophobic basic compounds by means of conventional reversed-phase liquid chromatographic methods has several drawbacks. Owing to the characteristics of micellar liquid chromatography (MLC) and capillary electrophoresis (CE), these techniques could be advantageous alternatives to reversed-phase chromatographic methods for the determination of these kinds of compounds. The objective of this study was to develop and compare MLC and CE methods for the determination of antipsychotic basic drugs (amitryptiline, haloperidol, perphenazine and thioridazine) in pharmaceutical preparations. The chromatographic determination of the analytes was performed on a Kromasil C18 analytical column; the mobile phase was 0.04 m cetyltrimethylammonium bromide (CTAB), at pH 3, containing 5% 1-butanol, at a flow rate of 1 mL/min. The CE separation was performed in a fused-silica capillary with a 50 mm tris-(hydroxymethyl)-aminomethane buffer, pH 7, at an applied voltage of 20 kV, using barbital as internal stardard. The proposed methods are suitable for a reliable quantitation of these compounds in the commercial tablets and drops in terms of accuracy and precision and require a very simple pre-treatment of the samples. By comparing the performance characteristics and experimental details of the MLC and CE methods we conclude that CE seems to be slightly better than MLC in the determination of highly hydrophobic compounds in pharmaceuticals in terms of resolution and economy, taking into account that the limits of detection are not a handicap in pharmaceutical samples. Copyright © 2006 John Wiley & Sons, Ltd. [source]