Experimental Crosses (experimental + cross)

Distribution by Scientific Domains


Selected Abstracts


Mixture Generalized Linear Models for Multiple Interval Mapping of Quantitative Trait Loci in Experimental Crosses

BIOMETRICS, Issue 2 2009
Zehua Chen
Summary Quantitative trait loci mapping in experimental organisms is of great scientific and economic importance. There has been a rapid advancement in statistical methods for quantitative trait loci mapping. Various methods for normally distributed traits have been well established. Some of them have also been adapted for other types of traits such as binary, count, and categorical traits. In this article, we consider a unified mixture generalized linear model (GLIM) for multiple interval mapping in experimental crosses. The multiple interval mapping approach was proposed by Kao, Zeng, and Teasdale (1999, Genetics152, 1203,1216) for normally distributed traits. However, its application to nonnormally distributed traits has been hindered largely by the lack of an efficient computation algorithm and an appropriate mapping procedure. In this article, an effective expectation,maximization algorithm for the computation of the mixture GLIM and an epistasis-effect-adjusted multiple interval mapping procedure is developed. A real data set, Radiata Pine data, is analyzed and the data structure is used in simulation studies to demonstrate the desirable features of the developed method. [source]


Polygenic Control of Idiopathic Generalized Epilepsy Phenotypes in the Genetic Absence Rats from Strasbourg (GAERS)

EPILEPSIA, Issue 4 2004
Gabrielle Rudolf
Summary: Purpose: Generalized nonconvulsive absence seizures are characterized by the occurrence of synchronous and bilateral spike-and-wave discharges (SWDs) on electroencephalographic recordings, concomitant with behavioral arrest. The GAERS (genetic absence rats from Strasbourg) strain, a well-characterized inbred model for idiopathic generalized epilepsy, spontaneously develops EEG paroxysms that resemble those of typical absence seizures. The purpose of this study was to investigate the genetic control of SWD variables by using a combination of genetic analyses and electrophysiological measurements in an experimental cross derived from GAERS and Brown Norway (BN) rats. Methods: SWD subphenotypes were quantified on EEG recordings performed at both 3 and 6 months in a cohort of 118 GAERS × BN F2 animals. A genome-wide scan of the F2 progenies was carried out with 146 microsatellite markers that were used to test each marker locus for evidence of genetic linkage to the SWD quantitative traits. Results: We identified three quantitative trait loci (QTLs) in chromosomes 4, 7, and 8 controlling specific SWD variables in the cross, including frequency, amplitude, and severity of SWDs. Age was a major factor influencing the detection of genetic linkage to the various components of the SWDs. Conclusions: The identification of these QTLs demonstrates the polygenic control of SWDs in the GAERS strain. Genetic linkages to specific SWD features underline the complex mechanisms contributing to SWD development in idiopathic generalized epilepsy. [source]


A model selection approach for the identification of quantitative trait loci in experimental crosses

JOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES B (STATISTICAL METHODOLOGY), Issue 4 2002
Karl W. Broman
Summary. We consider the problem of identifying the genetic loci (called quantitative trait loci (QTLs)) contributing to variation in a quantitative trait, with data on an experimental cross. A large number of different statistical approaches to this problem have been described; most make use of multiple tests of hypotheses, and many consider models allowing only a single QTL. We feel that the problem is best viewed as one of model selection. We discuss the use of model selection ideas to identify QTLs in experimental crosses. We focus on a back-cross experiment, with strictly additive QTLs, and concentrate on identifying QTLs, considering the estimation of their effects and precise locations of secondary importance. We present the results of a simulation study to compare the performances of the more prominent methods. [source]


Mating compatibility, life-history traits, and RAPD-PCR variation in Bemisia tabaci associated with the cassava mosaic disease pandemic in East Africa

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2001
M.N. Maruthi
Abstract The pandemic of a severe form of cassava mosaic virus disease (CMVD) in East Africa is associated with abnormally high numbers of its whitefly vector, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). To determine whether a novel B. tabaci biotype was associated with the CMVD pandemic, reproductive compatibility, fecundity, nymphal development, and random amplified polymorphic DNA (RAPD) variability were examined in, and between, B. tabaci colonies collected from within the CMVD pandemic and non-pandemic zone in Uganda. In a series of reciprocal crosses carried out over two generations among the six CMVD pandemic and four non-pandemic zone cassava B. tabaci colonies, there was no evidence of mating incompatibility. All the crosses produced both female and male progeny in the F1 and F2 generations, which in a haplo-diploid species such as B. tabaci indicates successful mating. There also were no significant differences between the sex ratios for the pooled data of experimental crosses, between individuals from two different colonies and control crosses between individuals from the same colony. Only one instance of mating incompatibility occurred in a control cross between cassava B. tabaci from Uganda and cotton B. tabaci from India. Measures of fecundity of the pandemic and non-pandemic zone B. tabaci on four cassava varieties showed no significant differences in their fecundity, nymphal development or numbers surviving to adult eclosion. Cluster analysis of 26 RAPD bands using six 10-mer primers was concordant with the mating results, grouping the pandemic and non-pandemic zone colonies into a single large group, also including a B. tabaci colony collected from cassava in Tanzania. These results suggest that it is unlikely that the severe CMVD pandemic in East Africa is associated with a novel and reproductively isolated B. tabaci biotype. [source]


An evaluation of the etiology of reduced CYP1A1 messenger RNA expression in the Atlantic tomcod from the Hudson River, New York, USA, using reverse transcriptase polymerase chain reaction analysis

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2001
Nirmal K. Roy
Abstract Adult Atlantic tomcod, Microgadus tomcod, from the Hudson River, New York State, USA, exhibit reduced inducibility of hepatic cytochrome P4501A1 (CYP1A1) mRNA compared with adult tomcod from the cleaner Miramichi River, New Brunswick, Canada, when treated with coplanar polychlorinated biphenyl (PCB) congeners or 2,3,7,8-tetrachlorodibenzo- p -dioxin. In contrast, little difference in CYP1A1 inducibility is observed between tomcod from these two rivers when treated with polycyclic aromatic hydrocarbons (PAHs). We sought to determine if impaired hepatic CYP1A1 inducibility in Hudson River tomcod results from a multigenerational, genetic adaptation or a single generational, physiological acclimation. Embryos and larvae from controlled experimental crosses of Hudson River and Miramichi River parents were exposed for 24 h to water-borne PCB congener 77 (10 ppm), benzo[a]pyrene (BaP; 10 ppm), or dimethysulfoxide, and CYP1A1 expression was assessed in individual larva using competitive reverse transcriptase polymerase chain reaction (RT-PCR) analysis. The CYP1A1 mRNA was significantly induced in larvae from both populations by BaP (47- and 52-fold) and PCB 77 (9- and 22-fold), although levels of expression were higher in offspring of Miramichi matings. Most important, CYP1A1 mRNA was significantly induced by PCB 77 in larvae from Hudson River parents. Concentrations of dioxin, furan, and PCB congeners were measured in livers and eggs of female tomcod from these two locales to quantify the extent of maternal transfer of contaminants. For both rivers, wet-weight contaminant concentrations were significantly higher (4,7 times) in livers than in eggs of the same females, suggesting that a threshold level of contaminants may have to be reached before CYP1A1 transcription is impaired. We conclude that reduced inducibility of hepatic CYP1A1 mRNA in adult tomcod from the Hudson River is most consistent with single-generational acclimation. [source]


Mouse models for genetic dissection of polygenic gastrointestinal diseases

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2 2003
S. Hillebrandt
Abstract Many diseases with a major public health impact are the result of complex interactions between environmental factors and multiple genes. In the past decade, methods for genome analysis, in particular quantitative trait locus (QTL) analysis in animal models, were developed to identify and localize the genes responsible for multifactorial (polygenic) diseases; QTL analysis is based on experimental crosses between inbred strains with high and low genetic susceptibility. Recently the genes underlying several QTLs could be cloned successfully. Here we describe the impact of these genomic approaches in mice on our understanding of the multifactorial genetics of three gastrointestinal diseases related to metabolism (cholesterol cholelithiasis), development (gastroschisis), and colorectal cancer. The examples demonstrate how mouse models continue to be an invaluable tool in unravelling complex pathomechanisms and unlocking our understanding of human diseases. [source]


DO RECENT FINDINGS IN PLANT MITOCHONDRIAL MOLECULAR AND POPULATION GENETICS HAVE IMPLICATIONS FOR THE STUDY OF GYNODIOECY AND CYTONUCLEAR CONFLICT?

EVOLUTION, Issue 5 2008
David E. McCauley
The coexistence of females and hermaphrodites in plant populations, or gynodioecy, is a puzzle recognized by Darwin. Correns identified cytoplasmic inheritance of one component of sex expression, now known as cytoplasmic male sterility (CMS). Lewis established cytonuclear inheritance of gynodioecy as an example of genetic conflict. Although biologists have since developed an understanding of the mechanisms allowing the joint maintenance of CMS and nuclear male fertility restorer genes, puzzles remain concerning the inheritance of sex expression and mechanisms governing the origination of CMS. Much of the theory of gynodioecy rests on the assumption of maternal inheritance of the mitochondrial genome. Here we review recent studies of the genetics of plant mitochondria, and their implications for the evolution and transmission of CMS. New studies of intragenomic recombination provide a plausible origin for the chimeric ORFs that characterize CMS. Moreover, evidence suggests that nonmaternal inheritance of mitochondria may be more common than once believed. These findings may have consequences for the maintenance of cytonuclear polymorphism, mitochondrial recombination, generation of gynomonoecious phenotypes, and interpretation of experimental crosses. Finally we point out that CMS can alter the nature of the cytonuclear conflict that may have originally selected for uniparental inheritance. [source]


DIFFERENTIAL SELECTION TO AVOID HYBRIDIZATION IN TWO TOAD SPECIES

EVOLUTION, Issue 9 2002
Karin S. Pfennig
Abstract., The fitness consequences of hybridization critically affect the speciation process. When hybridization is costly, selection favors the evolution of prezygotic isolating mechanisms (e.g., mating behaviors) that reduce heter-ospecific matings and, consequently, enhance reproductive isolation between species (a process termed reinforcement). If, however, selection to avoid hybridization differs between species, reinforcement may be impeded. Here, we examined both the frequency and fitness effects of hybridization between plains spadefoot toads (Spea bombifrons) and New Mexico spadefoot toads (S. multiplicata). Hybridization was most frequent in smaller breeding ponds that tend to be ephemeral, and heterospecific pairs consisted almost entirely of S. bombifrons females and S. multiplicata males. Moreover, in controlled experimental crosses, hybrid offspring from crosses in which S. multiplicata was maternal had significantly lower survival and longer development time than pure S. multiplicata offspring. By contrast, hybrid offspring from crosses in which S. bombifrons was maternal outperformed pure S. bombifrons offspring by reaching metamorphosis faster. These data suggest that, although S. multiplicata females are under selection to avoid hybridization, selection might favor those S. bombifrons females that hybridize with S. multiplicata if their breeding pond is highly ephemeral. Generally, the strength of selection to avoid hybridization may differ for hybridizing species, possibly impeding reinforcement. [source]


A model selection approach for the identification of quantitative trait loci in experimental crosses

JOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES B (STATISTICAL METHODOLOGY), Issue 4 2002
Karl W. Broman
Summary. We consider the problem of identifying the genetic loci (called quantitative trait loci (QTLs)) contributing to variation in a quantitative trait, with data on an experimental cross. A large number of different statistical approaches to this problem have been described; most make use of multiple tests of hypotheses, and many consider models allowing only a single QTL. We feel that the problem is best viewed as one of model selection. We discuss the use of model selection ideas to identify QTLs in experimental crosses. We focus on a back-cross experiment, with strictly additive QTLs, and concentrate on identifying QTLs, considering the estimation of their effects and precise locations of secondary importance. We present the results of a simulation study to compare the performances of the more prominent methods. [source]


Searching for sex-reversals to explain population demography and the evolution of sex chromosomes

MOLECULAR ECOLOGY, Issue 9 2010
CLAUS WEDEKIND
Sex determination can be purely genetic (as in mammals and birds), purely environmental (as in many reptiles), or genetic but reversible by environmental factors during a sensitive period in life, as in many fish and amphibians (Wallace et al. 1999; Baroiller et al. 2009a; Stelkens & Wedekind 2010). Such environmental sex reversal (ESR) can be induced, for example, by temperature changes or by exposure to hormone-active substances. ESR has long been recognized as a means to produce more profitable single-sex cultures in fish farms (Cnaani & Levavi-Sivan 2009), but we know very little about its prevalence in the wild. Obviously, induced feminization or masculinization may immediately distort population sex ratios, and distorted sex ratios are indeed reported from some amphibian and fish populations (Olsen et al. 2006; Alho et al. 2008; Brykov et al. 2008). However, sex ratios can also be skewed by, for example, segregation distorters or sex-specific mortality. Demonstrating ESR in the wild therefore requires the identification of sex-linked genetic markers (in the absence of heteromorphic sex chromosomes) followed by comparison of genotypes and phenotypes, or experimental crosses with individuals who seem sex reversed, followed by sexing of offspring after rearing under non-ESR conditions and at low mortality. In this issue, Alho et al. (2010) investigate the role of ESR in the common frog (Rana temporaria) and a population that has a distorted adult sex ratio. They developed new sex-linked microsatellite markers and tested wild-caught male and female adults for potential mismatches between phenotype and genotype. They found a significant proportion of phenotypic males with a female genotype. This suggests environmental masculinization, here with a prevalence of 9%. The authors then tested whether XX males naturally reproduce with XX females. They collected egg clutches and found that some had indeed a primary sex ratio of 100% daughters. Other clutches seemed to result from multi-male fertilizations of which at least one male had the female genotype. These results suggest that sex-reversed individuals affect the sex ratio in the following generation. But how relevant is ESR if its prevalence is rather low, and what are the implications of successful reproduction of sex-reversed individuals in the wild? [source]


Transgene escape: what potential for crop,wild hybridization?

MOLECULAR ECOLOGY, Issue 7 2005
T. T. ARMSTRONG
Abstract To date, regional surveys assessing the risk of transgene escape from GM crops have focused on records of spontaneous hybridization to infer the likelihood of crop transgene escape. However, reliable observations of spontaneous hybridization are lacking for most floras, particularly outside Europe. Here, we argue that evidence of interspecific reproductive compatibility derived from experimental crosses is an important component of risk assessment, and a useful first step especially where data from field observations are unavailable. We used this approach to assess the potential for transgene escape via hybridization for 123 widely grown temperate crops and their indigenous and naturalized relatives present in the New Zealand flora. We found that 66 crops (54%) are reproductively compatible with at least one other indigenous or naturalized species in the flora. Limited reproductive compatibility with wild relatives was evident for a further 12 crops (10%). Twenty-five crops (20%) were found to be reproductively isolated from all their wild relatives in New Zealand. For the remaining 20 crops (16%), insufficient information was available to determine levels of reproductive compatibility with wild relatives. Our approach may be useful in other regions where spontaneous crop,wild hybridization has yet to be well documented. [source]


The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2004
BRIAN C. HUSBAND
Theory suggests that the evolution of autotetraploids within diploid populations will be opposed by a minority-cytotype mating disadvantage. The role of triploids in promoting autotetraploid establishment is rarely considered, yet triploids are often found in natural populations and are formed in experimental crosses. Here, I evaluate the effects of triploids on autotetraploid evolution using computer simulations and by synthesizing research on the evolutionary dynamics of mixed-ploidy populations in Chamerion angustifolium (Onagraceae). Simulations show that the fate of a tetraploid in a diploid population varies qualitatively depending on the relative fitness of triploids, the ploidy of their gametes and the fitness of diploids relative to tetraploids. In general, even partially fit triploids can increase the likelihood of diploid,tetraploid coexistence and, in some cases, facilitate tetraploid fixation. Within the diploid,tetraploid contact zone of C. angustifolium, mixed populations are common (43%), and often (39%) contain triploids. Greenhouse and field studies indicate that triploid fitness is low (9% of diploids) but variable. Furthermore, euploid gametes produced by triploids can be x, 2x or 3x and contribute the majority (62%) of new polyploids formed in each generation (2.3 × 10,3). Although triploid bridge, alone, may not account for the evolution of autotetraploidy in C. angustifolium, it probably contributes to the prevalence of mixed-ploidy populations in this species. Therefore, in contrast to hybrids in homoploid species, triploids may actually facilitate rather than diminish the fixation of tetraploids by enhancing the rate of formation. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82, 537,546. [source]


Mixture Generalized Linear Models for Multiple Interval Mapping of Quantitative Trait Loci in Experimental Crosses

BIOMETRICS, Issue 2 2009
Zehua Chen
Summary Quantitative trait loci mapping in experimental organisms is of great scientific and economic importance. There has been a rapid advancement in statistical methods for quantitative trait loci mapping. Various methods for normally distributed traits have been well established. Some of them have also been adapted for other types of traits such as binary, count, and categorical traits. In this article, we consider a unified mixture generalized linear model (GLIM) for multiple interval mapping in experimental crosses. The multiple interval mapping approach was proposed by Kao, Zeng, and Teasdale (1999, Genetics152, 1203,1216) for normally distributed traits. However, its application to nonnormally distributed traits has been hindered largely by the lack of an efficient computation algorithm and an appropriate mapping procedure. In this article, an effective expectation,maximization algorithm for the computation of the mixture GLIM and an epistasis-effect-adjusted multiple interval mapping procedure is developed. A real data set, Radiata Pine data, is analyzed and the data structure is used in simulation studies to demonstrate the desirable features of the developed method. [source]