Expression Site (expression + site)

Distribution by Scientific Domains


Selected Abstracts


Antigenic variation with a twist , the Borrelia story

MOLECULAR MICROBIOLOGY, Issue 6 2006
Steven J. Norris
Summary A common mechanism of immune evasion in pathogenic bacteria and protozoa is antigenic variation, in which genetic or epigenetic changes result in rapid, sequential shifts in a surface-exposed antigen. In this issue of Molecular Microbiology, Dai et al. provide the most complete description to date of the vlp/vsp antigenic variation system of the relapsing fever spirochaete, Borrelia hermsii. This elaborate, plasmid-encoded system involves an expression site that can acquire either variable large protein (vlp) or variable small protein (vsp) surface lipoprotein genes from 59 different archival copies. The archival vlp and vsp genes are arranged in clusters on at least five different plasmids. Gene conversion occurs through recombination events at upstream homology sequences (UHS) found in each gene copy, and at downstream homology sequences (DHS) found periodically among the vlp/vsp archival genes. Previous studies have shown that antigenic variation in relapsing fever Borrelia not only permits the evasion of host antibody responses, but can also result in changes in neurotropism and other pathogenic properties. The vlsE antigenic variation locus of Lyme disease spirochaetes, although similar in sequence to the relapsing fever vlp genes, has evolved a completely different antigenic variation mechanism involving segmental recombination from a contiguous array of vls silent cassettes. These two systems thus appear to represent divergence from a common precursor followed by functional convergence to create two distinct antigenic variation processes. [source]


Overlapping sense and antisense transcription units in Trypanosoma brucei

MOLECULAR MICROBIOLOGY, Issue 4 2001
Matthias Liniger
Procyclins are the major surface glycoproteins of insect-form Trypanosoma brucei. The procyclin expression sites are polycistronic and are transcribed by an ,-amanitin-resistant polymerase, probably RNA polymerase I (Pol I). The expression sites are flanked by transcription units that are sensitive to ,-amanitin, which is a hallmark of Pol II-driven transcription. We have analysed a region of 9.5 kb connecting the EP/PAG2 expression site with the downstream transcription unit. The procyclin expression site is longer than was previously realized and contains an additional gene, procyclin-associated gene 4 (PAG4), and a region of unknown function, the T region, that gives rise to trans -spliced, polyadenylated RNAs containing small open reading frames (ORFs). Two new genes, GU1 and GU2, were identified in the downstream transcription unit on the opposite strand. Unexpectedly, the 3, untranslated region of GU2 and the complementary T transcripts overlap by several hundred base pairs. Replacement of GU2 by a unique tag confirmed that sense and antisense transcription occurred from a single chromosomal locus. Overlapping transcription is stage specific and may extend ,,10 kb in insect-form trypanosomes. The nucleotide composition of the T. brucei genome is such that antisense ORFs occur frequently. If stable mRNAs can be derived from both strands, the coding potential of the genome may be substantially larger than has previously been suspected. [source]


Antigenic Variation in Pneumocystis,

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 1 2007
JAMES R. STRINGER
ABSTRACT. Pneumocystis is a genus containing many species of non-culturable fungi, each of which infects a different mammalian host. Pneumonia caused by Pneumocystis is a problem in immunodeficient humans, but not in normal humans. Nevertheless, it appears that Pneumocystis organisms cannot survive and proliferate outside of their mammalian hosts, suggesting that Pneumocystis parasitizes immunocompetent mammals. Residence in immunocompetent hosts may rely on camouflage perpetrated by antigenic variation. In P. carinii, which is found in rats, there exist three families of genes that appear to be designed to create antigenic variation. One gene family, which encodes the major surface glycoprotein (MSG), contains nearly 100 members. Expression of the MSG family is controlled by restricting transcription to the one gene that is linked to a unique expression site. Changes in the sequence of the MSG gene linked to the expression site occur and appear to be caused by recombination with MSG genes not at the expression site. Preliminary evidence suggests that gene conversion is the predominant recombination mechanism. [source]


Differential expression of sphingosine-1-phosphate receptors 1-5 in the developing nervous system

DEVELOPMENTAL DYNAMICS, Issue 2 2009
H. Meng
Abstract Sphingosine-1-phosphate (S1P) binds to G protein,coupled receptors and can regulate a wide range of cellular functions. In a previous study, we isolated two key enzymes in the S1P pathway that were expressed in migrating neural crest cells. To determine if S1P receptors are present in neural crest cells or peripheral nervous system, we examine the expression patterns of S1P receptors (S1pr1-5) in mouse, and s1pr1 and s1pr3 in chick embryos. Here, we present a comprehensive expression analysis of these receptors using in situ hybridizations, which provide spatiotemporal information. We showed that S1pr2 was expressed in migrating cranial neural crest cells and enteric neurons. S1pr1 was prominently expressed in the neuroepithelium whereas S1pr4 and S1pr5 were in neurons at later stages. On the contrary, S1pr3 was predominantly detected in non-neuronal cells within and surrounding neural structures. We also described novel expression sites for S1P receptors in the developing nervous system. Developmental Dynamics 238:487,500, 2009. © 2009 Wiley-Liss, Inc. [source]


A common gene exclusion mechanism used by two chemosensory systems

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2009
Luca Capello
Abstract Sensory coding strategies within vertebrates involve the expression of a limited number of receptor types per sensory cell. In mice, each vomeronasal sensory neuron transcribes monoallelically a single V1R pheromone receptor gene, chosen from a large V1R repertoire. The nature of the signals leading to this strict receptor expression is unknown, but is apparently based on a negative feedback mechanism initiated by the transcription of the first randomly chosen functional V1R gene. We show, in vivo, that the genetic replacement of the V1rb2 pheromone receptor coding sequence by an unrelated one from the odorant receptor gene M71 maintains gene exclusion. The expression of this exogenous odorant receptor in vomeronasal neurons does not trigger the transcription of odorant receptor-associated signalling molecules. These results strongly suggest that despite the different odorant and vomeronasal receptor expression sites, function and transduction cascades, a common mechanism is used by these chemoreceptors to regulate their transcription. [source]


Calcium Channel TRPV6 Is Involved in Murine Maternal,Fetal Calcium Transport,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2008
Yoshiro Suzuki
Abstract Maternal,fetal calcium (Ca2+) transport is crucial for fetal Ca2+ homeostasis and bone mineralization. In this study, the physiological significance of the transient receptor potential, vanilloid 6 (TRPV6) Ca2+ channel in maternal,fetal Ca2+ transport was investigated using Trpv6 knockout mice. The Ca2+ concentration in fetal blood and amniotic fluid was significantly lower in Trpv6 knockout fetuses than in wildtypes. The transport activity of radioactive Ca2+ (45Ca) from mother to fetuses was 40% lower in Trpv6 knockout fetuses than in wildtypes. The ash weight was also lower in Trpv6 knockout fetuses compared with wildtype fetuses. TRPV6 mRNA and protein were mainly localized in intraplacental yolk sac and the visceral layer of extraplacental yolk sac, which are thought to be the places for maternal,fetal Ca2+ transport in mice. These expression sites were co-localized with calbindin D9K in the yolk sac. In wildtype mice, placental TRPV6 mRNA increased 14-fold during the last 4 days of gestation, which coincides with fetal bone mineralization. These results provide the first in vivo evidence that TRPV6 is involved in maternal,fetal Ca2+ transport. We propose that TRPV6 functions as a Ca2+ entry pathway, which is critical for fetal Ca2+ homeostasis. [source]


,Nothing is permanent but change', , antigenic variation in persistent bacterial pathogens

CELLULAR MICROBIOLOGY, Issue 12 2009
Guy H. Palmer
Summary Pathogens persist in immunocompetent mammalian hosts using various strategies, including evasion of immune effectors by antigenic variation. Among highly antigenically variant bacteria, gene conversion is used to generate novel expressed variants from otherwise silent donor sequences. Recombination using oligonucleotide segments from multiple donors is a combinatorial mechanism that tremendously expands the variant repertoire, allowing thousands of variants to be generated from a relatively small donor pool. Three bacterial pathogens, each encoded by a small genome (< 1.2 Mb), illustrate this variant generating capacity and its role in persistent infection. Borrelia burgdorferi VlsE diversity is encoded and expressed on a linear plasmid required for persistence and recent experiments have demonstrated that VlsE recombination is necessary for persistence in the immunocompetent host. In contrast, both Treponema pallidum TprK and Anaplasma marginale Msp2 expression sites and donors are chromosomally encoded. Both T. pallidum and A. marginale generate antigenic variants in vivo in individual hosts and studies at the population level reveal marked strain diversity in the variant repertoire that may underlie pathogen strain structure and the capacity for re-infection and heterologous strain superinfection. Here, we review gene conversion in bacterial antigenic variation and discuss the short- and long-term selective pressures that shape the variant repertoire. [source]