Expression Plasmid (expression + plasmid)

Distribution by Scientific Domains


Selected Abstracts


Acceleration of granulocyte colony-stimulating factor-induced neutrophilic nuclear lobulation by overexpression of Lyn tyrosine kinase

FEBS JOURNAL, Issue 1 2002
Tomomi Omura
Stimulation with granulocyte colony-stimulating factor (G-CSF) induces myeloid precursor cells to differentiate into neutrophils, and tyrosine phosphorylation of certain cellular proteins is crucial to this process. However, the signaling pathways for neutrophil differentiation are still obscure. As the Src-like tyrosine kinase, Lyn, has been reported to play a role in G-CSF-induced proliferation in avian lymphoid cells, we examined its involvement in G-CSF-induced signal transduction in mammalian cells. Expression plasmids for wild-type Lyn (Lyn) and kinase-negative Lyn (LynKN) were introduced into a murine granulocyte precursor cell line, GM-I62M, that can respond to G-CSF with neutrophil differentiation, and cell lines that overexpressed these molecules (GM-Lyn, GM-LynKN) were established. Upon G-CSF stimulation, both the GM-Lyn and GM-LynKN cells began to differentiate into neutrophils, showing early morphological changes within a few days, much more rapidly than did the parental cells, which started to exhibit nuclear lobulation about 10 days after the cells were transferred to G-CSF-containing medium. However, the time course of expression of the myeloperoxidase gene, another neutrophil differentiation marker, was not affected by the overexpression of Lyn or LynKN. Therefore, in normal cells, protein interactions with Lyn, but not its kinase activity, are important for the induction of G-CSF-induced neutrophilic nuclear lobulation in mammalian granulopoiesis. [source]


Misexpression of genes in brain vesicles by in ovo electroporation

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 3 2000
Harukazu Nakamura
Transfection to living chick embryos in ovo by electroporation has been recently developed. In this mini-review, misexpression in brain vesicles is introduced. To transfect, expression plasmid is inserted in the brain vesicle, and the square pulse of 25 V, 50 ms was charged five times. The translation product of the transfected gene is detected 2 h after electroporation, and reaches the peak at 24 h after electroporation. Transfection is so effective that this method is contributing greatly to the study of the molecular mechanisms of morphogenesis. [source]


Craniosynostosis-Associated Gene Nell-1 Is Regulated by Runx2,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2007
Thien Truong
Abstract We studied the transcriptional regulation of NELL-1, a craniosynostosis-related gene. We identitifed three OSE2 elements in the NELL-1 promoter that are directly bound and transactivated by Runx2. Forced expression of Runx2 induces NELL-1 expression in rat calvarial cells. Introduction: We previously reported the upregulation of NELL-1 in human craniosynostosis and the overexpression of Nell-1 in transgenic animals that induced premature suture closure associated with increased osteoblast differentiation. To study the transcriptional regulation of NELL-1, we analyzed the 5, flanking region of the human NELL-1 gene. We identified three osteoblast specific binding elements 2 (OSE2) sites (A, B, and C) within 2.2 kb upstream of the transcription start site and further studied the functionality of these sites. Materials and Methods: An area of 2.2 kb and a truncated 325 bp, which lacked the three OSE sites, were cloned into a luciferase reporter gene, and co-transfected with Runx2 expression plasmid. The three OSE2 sites were individually mutated and co-transfected with Runx2 expression plasmid into Saos2 cells. Gel shifts and supershifts with Runx2 antibodies were used to determine specific binding to OSE2 sites. CHIP assays were used to study in vivo binding of Runx2 to the Nell-1 promoter. Runx2 expression plasmid was transfected into wildtype and Runx2,/, calvarial cells. Nell-1, osteocalcin, and Runx2 expression levels were measured using RT-PCR. Results: Addition of Runx2 dose-dependently increased the luciferase activity in the human NELL-1 promoter-luciferase p2213. The p325 truncated NELL-1 construct showed significantly lower basal level of activity. Nuclear extract from Saos2 cells formed complexes with site A, B, and C probes and were supershifted with Runx2 antibody. Mutation of sites A, B, and C significantly decreased basal promoter activity. Furthermore, mutation of sites B and C had a blunted response to Runx2, whereas mutation of site A had a lesser effect. Runx2 bound to NELL-1 promoter in vivo. Transfection of Runx2 in rat osteoblasts upregulated Nell-1 and Ocn expression, and in Runx2 null calvarial cells, both Nell-1 and Ocn expression were rescued. Conclusions: Runx2 directly binds to the OSE2 elements and transactivates the human NELL-1 promoter. These results suggest that Nell-1 is likely a downstream target of Runx2. These findings may also extend our understanding of the molecular mechanisms governing the pathogenesis of craniosynostosis. [source]


Up-regulation of the lysyl hydroxylase 2 gene by acetaminophen and isoniazid is modulated by transcription factor c-Myb

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 4 2010
Masafumi Kubota
Abstract Objectives Lysyl hydroxylase 2 (LH2), an isoform of hydroxylase, catalyses the hydroxylation of lysine residues in the telopeptide of collagen to form stable and irreversible cross-linkages in collagen. Increased activity of this enzyme in activated stellate cells in human liver has been proposed to relate to the promotion of hepatic fibrosis. In the present study, we examined the regulation of LH2 expression in drug-induced liver injury in order to clarify the mechanisms behind the hepatic fibrosis caused by certain drugs. Methods The mRNA and protein expression of the target gene were detected by real-time reverse transcription-polymerase chain reaction (RT-PCR) with specific primers and Western blotting with a specific antibody, respectively. Key findings The expression of LH2 was increased in HepG2 cells incubated with acetaminophen and isoniazid. This increase was accompanied by an increase in the expression of c-myeloblastosis viral oncogene homolog (Myb) mRNA. Over-expression of c-Myb in cells transfected with a c-Myb expression plasmid, pMbm I, caused an increase in the expression of LH2 mRNA. Mutation of the Myb-binding site in the promoter region of the LH2 gene resulted in a loss of transcriptional activation in the reporter gene assay. Conclusions These results suggest that c-Myb modulates the expression of the LH2 gene in HepG2 cells incubated with drugs causing hepatic fibrosis [source]


RNA interference targeting the platelet-derived growth factor receptor , subunit ameliorates experimental hepatic fibrosis in rats

LIVER INTERNATIONAL, Issue 10 2008
Si-Wen Chen
Abstract Background/Aims: Platelet-derived growth factor (PDGF) is the strongest stimulator of the proliferation of hepatic stellate cells (HSCs). PDGF receptor , subunit (PDGFR-,) is acquired on HSCs proliferation induced by PDGF. In this study, we aim to investigate the effect of PDGFR-, small interference RNA (siRNA) on experimental hepatic fibrosis. Methods: We constructed a PDGFR-, siRNA expression plasmid and investigated its effect on the activation of HSCs. Bromodeoxyuridine incorporation was performed to investigate the effect of PDGFR-, siRNA on HSCs proliferation. A hydrodynamics-based transfection method was used to deliver PDGFR-, siRNA to rats with hepatic fibrosis. The distribution of transgenes in the liver was observed by immunofluorescence. The antifibrogenic effect of PDGFR-, siRNA was investigated pathologically. Results: Platelet-derived growth factor receptor-, subunit siRNA could significantly downregulate PDGFR-, expression, suppress HSCs activation, block the mitogen-activated protein kinase signalling pathway and inhibit HSCs proliferation in vitro. PDGFR-, siRNA expression plasmid could be delivered into activated HSCs by the hydrodynamics-based transfection method, and remarkably improve the liver function of the rat model induced by dimethylnitrosamine and bile duct ligation. Furthermore, the progression of fibrosis in the liver was significantly suppressed by PDGFR-, siRNA in both animal models. Conclusions: Platelet-derived growth factor receptor-, subunit siRNA may be presented as an effective antifibrogenic gene therapeutic method for hepatic fibrosis. [source]


KAI1 gene suppresses invasion and metastasis of hepatocellular carcinoma MHCC97-H cells in vitro and in animal models

LIVER INTERNATIONAL, Issue 1 2008
Jian-min Yang
Abstract Background: Downregulation of KAI1 gene expression has been found in many types of cancer cells and is closely related to cancer invasion and metastasis. This study was aimed at investigating the effects and possible underlying mechanisms of KAI1 gene on invasion and metastasis of human hepatocellular carcinoma (HCC). Methods: The invasive ability, visco-elastic properties and cell adhesion forces were analysed in different HCC cells originating from the MHCC97-H cell line transfected with either the sense or the antisense KAI1 expression plasmid. Tumuorigenicity, metastatic abilities, extracellular matrix (ECM) and intercellular adhesion molecule-1 (ICAM-1) expression were also evaluated in the nude mouse models of the xenografted and orthotopic liver cancer cells. Results: Compared with their parental cells, in the HCC cells transfected with the sense KAI1 gene, the invasive ability in vitro was significantly decreased (P<0.01); the cellular elastic coefficients K1, K2 and , were significantly higher (P<0.05); the cells adhesion forces to fibronectin were significantly lower (P<0.01). The sense KAI1 gene transfection into the cancer cells also inhibited their invasion and lung metastasis in the orthotopic liver cancer nude mice. However, the opposite changes were observed in the HCC cells transfected with the antisense KAI1 gene. KAI1 gene transfection also affected ECM and ICAM-1 expression in the transplanted liver cancer. Conclusion: The KAI1 gene plays an important role in the invasion and metastasis of human HCC and its upregulation in HCC cells suppresses their invasive and metastatic abilities. KAI1 gene functioned as a metastasis inhibitor by regulating the HCC cell biophysical behaviours including aggregation, adhesion, motility and visco-elastic properties. [source]


Tomato profilin Lyc e 1: IgE cross-reactivity and allergenic potency

ALLERGY, Issue 5 2004
S. Westphal
Background:, To date, very little data are available about the nature of tomato allergens. Immunoglobulin E (IgE) cross-reactive profilins have been suggested to account for allergic symptoms in patients suffering from tomato allergy. Methods:, The cDNA of tomato profilin was amplified by reversely transcribed polymerase chain reaction (RT-PCR) from total RNA extracted from ripe tomato fruit. The gene was cloned into the pET101D expression plasmid and the protein was produced in Escherichia coli BL21. Purification was performed via poly- l -proline (PLP) affinity chromatography. IgE reactivity of recombinant tomato profilin was investigated by immunoblot and enzyme-linked immunosorbent assay. IgE-inhibition studies were performed to analyse cross-reactivity with other profilins. To determine the allergenic activity of the recombinant protein, basophil histamine release assays using sera of patients with adverse reactions to tomato were performed. Results:, Profilin was identified as a new minor allergen in tomato fruits. The recombinant tomato profilin comprises 131 amino acids and high sequence identity to other allergenic food and pollen profilins. It was shown to be IgE-reactive with a prevalence of 22% (11/50) in tomato-allergic patients. In patients with tomato allergy and multiple sensitization to other foods and birch pollen, IgE directed against tomato profilin showed a strong cross-reactivity with profilins from plant food sources and birch pollen. The tomato profilin was able to induce mediator release from human basophils. Conclusion:, The tomato profilin is a minor allergen in tomato fruit. Thus, it shows biological activity, as confirmed by in vitro histamine release assays with human basophils and thereby has the potential to account for clinical symptoms in tomato-allergic patients. [source]


Expression of the ,-adhesin part of HRgpA in Sprague Dawley rats induces a specific antibody response

MOLECULAR ORAL MICROBIOLOGY, Issue 2 2004
K. S. Vågnes
The ,-adhesin part of the Porphyromonas gingivalis W50 (ATCC 53978) protease HRgpA was cloned in an eukaryotic expression vector and expressed in COS-7 cells. The monoclonal antibody MAb (61BG1.3), specific for the hemagglutinating domain of ,-adhesin, recognized the expressed ,-adhesin in the transfected cells both by immunoblot and immunofluorescence. Sprague Dawley rats were immunized intramuscularly with ,-adhesin encoding expression plasmid and expression plasmid without ,-adhesin insert. Skeletal muscle tissue at the site of immunization in the ,-adhesin immunized animals was shown to express this protein. The immunization induced a ,-adhesin-specific antibody response. Sera from the immunized animals were tested for hemagglutination inhibiting activity. Due to high natural inhibiting activity in all rat sera tested, no increased hemagglutination inhibition was detected in sera from the ,-adhesin immunized animals. [source]


Reciprocal regulation of the mouse protamine genes by the orphan nuclear receptor germ cell nuclear factor and CREM,

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2004
Geoffrey C. Hummelke
Abstract Germ cell nuclear factor (GCNF) is a member of the nuclear receptor superfamily, which is expressed in the adult predominantly in the male and female germ cells. In the male, GCNF is expressed in spermatogenic cells. GCNF binds as a homodimer to direct repeat response elements of the consensus half-site sequence, AGGTCA, with 0 bp spacing (DR0). Using this information, a search of genomic databases was performed to identify candidate GCNF responsive, spermatogenic-specific, genes that contain DR0 sequences. The mouse protamine genes are the strongest candidates identified to date, as they are post-meiotically expressed in round spermatids and contain DR0 elements in their proximal promoters. Previous work has shown that both recombinant and endogenous GCNF bind to DR0 elements in the mouse protamine 1 and 2 (Prm 1 and Prm 2) promoters with high affinity and specificity. The present work shows that in transient transfection assays in GC-1 and JEG-3 cells, co-transfection of a GCNF-VP16 expression plasmid with reporter plasmids containing either the wild type Prm 1 or Prm 2 promoter established that GCNF-VP16 is able to regulate transcription from both promoters in a DR0-dependent manner. Wild type GCNF, in contrast, acts as a repressor of basal transcription on both the Prm 1 and Prm 2 promoters in a DR0-dependent manner. Furthermore, CREM, activation of these promoters is also repressed by wild-type GCNF, indicating that GCNF also acts as a repressor of activated transcription. GCNF therefore defines a novel nuclear receptor-signaling pathway that may regulate a subset of genes involved in the terminal differentiation process of spermatogenesis, exemplified by the protamines. Mol. Reprod. Dev. 68: 394,407, 2004. © 2004 Wiley-Liss, Inc. [source]


Increased surfactant protein-D and foamy macrophages in smoking-induced mouse emphysema

RESPIROLOGY, Issue 2 2007
Noriyuki HIRAMA
Background and objective: The molecular mechanisms underlying COPD remain undetermined. The lungs of surfactant protein-D (SP-D) deficient mice show emphysema and an excessive number of foamy macrophages. This study aims to elucidate roles of SP-D and foamy macrophages in smoking-induced mouse emphysema. Methods: Twenty B6C3F1 mice were exposed to cigarette smoke (2 cigarettes/day/mouse for 6 months). The mice were killed, and formalin-fixed, paraffin-embedded lung sections were carried out on seven mice, BAL was carried out on six mice, and seven mice were used to make lung homogenates. In in vitro studies, A549 cells were transduced with the SP-D expression plasmid and treated with cigarette smoke extract to evaluate cell viability. Results: Emphysema was induced in the mice by chronic cigarette smoke exposure. Increased expression of matrix metalloproteinase-9 and -12 was observed, and foamy alveolar macrophages accumulated in the smoke-exposed lungs. Immunostaining of BAL cells revealed the major source of matrix metalloproteinase-12 to be foamy alveolar macrophages. Furthermore, SP-D was elevated in emphysema lungs. Expression of transcription factors, Fra-1, junB and C/EBP, (which induce SP-D) were significantly elevated in emphysema lungs. The in vitro expression of SP-D gene in A549 cells prolonged cell survival following exposure to cigarette smoke condensate. Conclusions: The accumulation of foamy alveolar macrophages may play a key role in the development of smoking-induced emphysema. Increased SP-D may play a protective role in the development of smoking-induced emphysema, in part by preventing alveolar cell death. [source]


Phage ,C31 integrase-mediated genomic integration of the common cytokine receptor gamma chain in human T-cell lines

THE JOURNAL OF GENE MEDICINE, Issue 5 2006
Yoshinori Ishikawa
Abstract Background X-linked severe combined immunodeficiency (SCID-X1, X-SCID) is a life-threatening disease caused by a mutated common cytokine receptor , chain (,c) gene. Although ex vivo gene therapy, i.e., transduction of the ,c gene into autologous CD34+ cells, has been successful for treating SCID-X1, the retrovirus vector-mediated transfer allowed dysregulated integration, causing leukemias. Here, to explore an alternative gene transfer methodology that may offer less risk of insertional mutagenesis, we employed the ,C31 integrase-based integration system using human T-cell lines, including the ,c-deficient ED40515(-). Methods A ,C31 integrase and a neor gene expression plasmid containing the ,C31 attB sequence were co-delivered by electroporation into Jurkat cells. After G418 selection, integration site analyses were performed using linear amplification mediated-polymerase chain reaction (LAM-PCR). ED40515(-) cells were also transfected with a ,c expression plasmid containing attB, and the integration sites were determined. IL-2 stimulation was used to assess the functionality of the transduced ,c in an ED40515(-)-derived clone. Results Following co-introduction of the ,C31 integrase expression plasmid and the plasmid carrying attB, the efficiency of integration into the unmodified human genome was assessed. Several integration sites were characterized, including new integration sites in intergenic regions on chromosomes 13 and 18 that may be preferred in hematopoietic cells. An ED40515(-) line bearing the integrated ,c gene exhibited stable expression of the ,c protein, with normal IL-2 signaling, as assessed by STAT5 activation. Conclusions This study supports the possible future use of this ,C31 integrase-mediated genomic integration strategy as an alternative gene therapy approach for treating SCID-X1. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Development and characterization of a minimal inducible packaging cell line for simian immunodeficiency virus-based lentiviral vectors

THE JOURNAL OF GENE MEDICINE, Issue 4 2002
Seraphin Kuate
Abstract Background Lentiviral vectors allow gene transfer into non-dividing cells. Further development of these vector systems requires stable packaging cell lines that enable adequate safety testing. Methods To generate a packaging cell line for vectors based on simian immunodeficiency virus (SIV), expression plasmids were constructed that contain the codon-optimized gag-pol gene of SIV and the gene for the G protein of vesicular stomatitis virus (VSV-G) under the control of an ponasterone-inducible promoter. Stable cell lines expressing these packaging constructs were established and characterized. Results The RT activity and vector titers of cell clones stably transfected with the inducible gag-pol expession plasmid could be induced by ponasterone by more than a factor of 1000. One of these clones was subsequently transfected with the ponasterone-inducible VSV-G expression plasmid to generate packaging cells. Clones of the packaging cells were screened for vector production by infection with an SIV vector and subsequent induction by ponasterone. In the supernatant of selected ponasterone-induced producer clones vector titers of more than 1×105 transducing units/ml were obtained. Producer cell clones were stable for at least five months, as tested by vector production. Conclusions The packaging cells described should be suitable for most preclinical applications of SIV-based vectors. By avoiding regions of high homology between the vector and the packaging constructs, the design of the SIV packaging cell line should reduce the risk of transfer of packaging genes to target cells and at the same time provide flexibility with respect to the SIV vector constructs that can be packaged. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Trex-1 deficiency in rheumatoid arthritis synovial fibroblasts

ARTHRITIS & RHEUMATISM, Issue 9 2010
Michel Neidhart
Objective To explore whether the increased expression of long interspersed nuclear element 1 (LINE-1; L1) messenger RNA (mRNA) and protein in rheumatoid arthritis synovial fibroblasts (RASFs) is associated with decreased expression of Trex-1, an exonuclease involved in the metabolization of L1 DNA:RNA hybrids. Methods Chromatin immunoprecipitation was used to detect L1-related p40 protein (L1-ORF1p) binding sequences in RASFs. Luciferase activity was measured in the synovial fibroblasts following cotransfection of the episomal plasmid with pJM105 expressing L1-ORF1p and pGL3-TS3 carrying the target sequence for L1-ORF1p. This luciferase reporter assay was used to compare the activity between RASFs and osteoarthritis synovial fibroblasts (OASFs) and to assess correlations of luciferase activity with the expression of Trex-1 measured by flow cytometry. The expression of Trex-1 mRNA and protein was also compared using real-time polymerase chain reaction, immunohistochemistry, and Western blot analyses. The role of Trex-1 in the L1-ORF1p,mediated luciferase activity assay was studied using interfering RNAs (iRNA) and a Trex-1 expression vector. Results Increased luciferase activity occurred after cotransfection of synovial fibroblasts with pJM105 and pGL3-TS3. L1-ORF1p activity was increased in RASFs as compared with OASFs, and this was correlated inversely with the expression of Trex-1. Levels of Trex-1 mRNA and protein were lower in RASFs than in OASFs. After transfection of the L1 expression plasmid, Trex-1 mRNA levels increased in OASFs, but not in RASFs. The addition of iRNA against Trex-1, however, resulted in an enhancement of L1-ORF1p activity in OASFs to the levels measured in RASFs. Overexpression of Trex-1 inhibited 5-azacytidine,induced expression of p38, MAPK, a gene carrying the TS3 sequence. Conclusion The deficiency of Trex-1 in RASFs allows a longer half-life of gene products encoded by active endogenous L1 retrotransposons. This pathway may play a role in diseases in which the cells exhibit a "spontaneous" aggressive behavior. [source]


Overexpression, purification, crystallization and preliminary X-ray studies of Vibrio cholerae EpsG

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 6 2009
Jason Jens
EpsG is the major pseudopilin protein of the Vibrio cholerae type II secretion system. An expression plasmid that encodes an N-terminally truncated form of EpsG with a C-terminal noncleavable His tag was constructed. Recombinant EpsG was expressed in Escherichia coli; the truncated protein was purified and crystallized by hanging-drop vapor diffusion against a reservoir containing 6,mM zinc sulfate, 60,mM MES pH 6.5, 15% PEG MME 550. The crystals diffracted X-rays to a resolution of 2.26,Å and belonged to space group P21, with unit-cell parameters a = 88.61, b = 70.02, c = 131.54,Å. [source]


Rabies virus glycoprotein expression in Drosophila S2 cells: Influence of re-selection on protein expression

BIOTECHNOLOGY JOURNAL, Issue 11 2009
Alexandra Souza dos Santos
Abstract The aim of this study was to achieve expression of recombinant rabies virus glycoprotein (rRVGP) in Drosophila S2 cells. For this, a cDNA coding for the selection hygromycin antibiotic and the cDNA encoding the RVGP protein under the control of the constitutive actin promoter (Ac) were cloned in an expression plasmid, which was transfected into S2 cells. S2 cell populations (S2AcRVGPHy) showed rRVGP expression in cell lysates, attaining concentrations up to 1.5 ,g/107 cells (705 ,g/L). Of the transfected cells, 20% were shown to express the rRVGP. Cell subpopulations selected by limiting dilution expressed higher rRVGP yields and 90% of the cells were shown to express the rRVGP. Cell populations re-selected by addition of hygromycin were shown to express 10 times higher rRVGP yields. The data presented here show that Drosophila S2 cells can be efficiently transfected with an expression/selection plasmid for rRVGP expression, allowing its synthesis with a high degree of physical and biological integrity. The importance of subpopulation selection was indicated by the increasing rRVGP yields during these procedures. [source]


Tribble 3, a novel oxidized low-density lipoprotein-inducible gene, is induced via the activating transcription factor 4,C/EBP homologous protein pathway

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1 2010
Yuan-Yuan Shang
Summary 1.,C/EBP homologueueueous protein (CHOP), an endoplasmic reticulum (ER) stress-inducible protein, has a critical role in regulation of the cell cycle and apoptosis by forming heterodimers with other C/EBP proteins. However, how CHOP function is regulated remains to be determined. The human homologue of Drosophila tribbles (TRIB3) is associated with CHOP and is upregulated by oxidized low-density lipoprotein (ox-LDL). The aim of the present study was to investigate the role of CHOP in ox-LDL-induced TRIB3 expression in macrophages. 2.,Human monocyte-derived macrophages were treated with various concentrations of ox-LDL (0, 2.5, 5, 10, 25 and 50 ,g/mL) or 2 ,g/mL tunicamycin for 0, 4, 8, 16, 24 and 48 h or were transfected with CHOP or TRIB3 expression plasmid and TRIB3 targeting short interference RNA (siRNA). The expression of CHOP and activating transcription factor 4 (ATF4) mRNA in treated cells was detected by quantitative real-time polymerase chain reaction (PCR). 3.,The expression of CHOP and ATF4 mRNA increased with increasing concentrations of ox-LDL and duration of time. The ox-LDL-induced expression of TRIB3 mRNA was upregulated later than the expression of CHOP and ATF4 mRNA. Overexpression of CHOP increased the mRNA expression of TRIB3, which was further increased in CHOP-overexpressing macrophages treated with ox-LDL. Overexpression of TRIB3 suppressed the expression of CHOP, whereas TRIB3 silencing increased CHOP expression following ox-LDL stimulation by a negative feedback mechanism. 4.,In conculsion, the expression of ATF4 and CHOP is upregulated by ox-LDL in a dose- and time-dependent manner in naturally differentiated human macrophages. Oxidized LDL induces TRIB3 expression via an ATF4/CHOP-dependent ER stress pathway. [source]


Thyroid hormone receptor , can control action potential duration in mouse ventricular myocytes through the KCNE1 ion channel subunit

ACTA PHYSIOLOGICA, Issue 2 2010
A. Mansén
Abstract Aims:, The reduced heart rate and prolonged QTend duration in mice deficient in thyroid hormone receptor (TR) ,1 may involve aberrant expression of the K+ channel ,-subunit KCNQ1 and its regulatory ,-subunit KCNE1. Here we focus on KCNE1 and study whether increased KCNE1 expression can explain changes in cardiac function observed in TR,1-deficient mice. Methods:, TR-deficient, KCNE1-overexpressing and their respective wildtype (wt) mice were used. mRNA and protein expression were assessed with Northern and Western blot respectively. Telemetry was used to record electrocardiogram and temperature in freely moving mice. Patch-clamp was used to measure action potentials (APs) in isolated cardiomyocytes and ion currents in Chinese hamster ovary (CHO) cells. Results:, KCNE1 was four to 10-fold overexpressed in mice deficient in TR,1. Overexpression of KCNE1 with a heart-specific promoter in transgenic mice resulted in a cardiac phenotype similar to that in TR,1-deficient mice, including a lower heart rate and prolonged QTend time. Cardiomyocytes from KCNE1-overexpressing mice displayed increased AP duration. CHO cells transfected with expression plasmids for KCNQ1 and KCNE1 showed an outward rectifying current that was maximal at equimolar plasmids for KCNQ1-KCNE1 and decreased at higher KCNE1 levels. Conclusion:, The bradycardia and prolonged QTend time in hypothyroid states can be explained by altered K+ channel function due to decreased TR,1-dependent repression of KCNE1 expression. [source]


Folic acid utilisation related to sulfa drug resistance in Saccharomyces cerevisiae

FEMS MICROBIOLOGY LETTERS, Issue 2 2001
Ann M. Bayly
Abstract Saccharomyces cerevisiae mutants deficient in folate synthesis have been constructed and employed to study the utilisation of exogenous folates in yeast. One mutant specifically lacked dihydropteroate synthase while the second lacked dihydrofolate synthase. Exogenous folinic acid restored optimal growth to both strains. Folic acid did not generally rescue growth but spontaneous isolates capable of utilising folic acid were selected. The folic acid synthesis pathway in the folate utilising isolates was restored via transformation with FOL1 or FOL3 expression plasmids and transformants were tested for resistance to sulfamethoxazole (SMX). The presence of elevated levels of folic acid led to greatly reduced SMX sensitivity regardless of whether strains were folate utilisers or not. [source]


Increase of calnexin gene dosage boosts the secretion of heterologous proteins by Hansenula polymorpha

FEMS YEAST RESEARCH, Issue 7 2007
Jens Klabunde
Abstract The type I membrane protein calnexin is a conserved key component of the quality control mechanism in the endoplasmic reticulum. It functions as a molecular chaperone that monitors the folding state of nascent polypeptides entering the endoplasmic reticulum. Calnexin also behaves as a lectin, as its chaperoning activity involves binding of oligosaccharide moieties present on newly imported glycoproteins. We isolated the calnexin gene (HpCNE1) from the methylotrophic yeast Hansenula polymorpha, and used HpCNE1 expression plasmids for supertransformation of H. polymorpha strains secreting target proteins of biotechnological interest. The elevated dosage of HpCNE1 enhanced secretion of the four proteins tested: three glycoproteins and one unglycosylated product. Secretion of bacterial alginate epimerase AlgE1 was increased threefold on average, and secretion of both human interferon-, and fungal consensus phytase twofold. With phytase and AlgE1 this improvement was all the more remarkable, as the secretion level was already high in the original strains (g L,1 range). The same approach improved secretion of human serum albumin, which lacks N-linked glycans, about twofold. Glycosylation of the pro-MF,1 leader may account for the effect of calnexin in this case. Our results argue that cooverexpression of calnexin can serve as a generally applicable tool for enhancing the secretion of all types of heterologous protein by H. polymorpha. [source]


The carboxy-terminal tail region of human Cav2.1 (P/Q-type) channel is not an essential determinant for its subcellular localization in cultured neurones

GENES TO CELLS, Issue 2 2005
Qiuping Hu
A recent report on the mechanism of synaptic targeting of Cav2.2 channel suggested that this process depends upon the presence of long C-terminal tail and that protein interactions mediated by SH3-binding and PDZ-binding motifs in the tail region are important. To examine the possibility that C-terminal tail of the Cav2.1 channel and the polyglutamine stretch therein are also involved in the mechanism for channel localization, we constructed several expression plasmids for human Cav2.1 channel tagged with enhanced green fluorescent protein (EGFP) and introduced them into mouse hippocampal neuronal culture. HC construct encodes short version of Cav2.1, and HS and HL encode Cav2.1 channel with a long C-terminal tail, which contains polyglutamine tract of 13 (normal range) and 28 (SCA6 disease range) repeat units, respectively. Surprisingly, transfection with HC, HS, and HL gave essentially the same results: EGFP signal was observed in cell soma, dendrites, and the axon as well. Furthermore, mutation of the PDZ-binding motif located at the C-terminus of the long version of Cav2.1, by adding FLAG tag, did not affect the localization patterns of HS and HL as well. Therefore, the C-terminal region is not indispensable for the subcellular localization of Cav2.1 channel, nor expansion of polyglutamine length affected the localization of the channel. Thus, it is possible that the localization mechanism of Cav2.1 channel is different from that of Cav2.2, though these channels share various structural and functional characteristics. [source]


Sequestosome 1 Mutations in Paget's Disease of Bone in Australia: Prevalence, Genotype/Phenotype Correlation, and a Novel Non-UBA Domain Mutation (P364S) Associated With Increased NF-,B Signaling Without Loss of Ubiquitin Binding,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2009
Sarah L Rea
Abstract Previously reported Sequestosome 1(SQSTM1)/p62 gene mutations associated with Paget's disease of bone (PDB) cluster in, or cause deletion of, the ubiquitin-associated (UBA) domain. The aims of this study were to examine the prevalence of SQSTM1 mutations in Australian patients, genotype/phenotype correlations and the functional consequences of a novel point mutation (P364S) located upstream of the UBA. Mutation screening of the SQSTM1 gene was conducted on 49 kindreds with PDB. In addition, 194 subjects with apparently sporadic PDB were screened for the common P392L mutation by restriction enzyme digestion. HEK293 cells stably expressing RANK were co-transfected with expression plasmids for SQSTM1 (wildtype or mutant) or empty vector and a NF-,B luciferase reporter gene. GST-SQSTM1 (wildtype and mutant) proteins were used in pull-down assays to compare monoubiquitin-binding ability. We identified SQSTM1 mutations in 12 of 49 families screened (24.5%), comprising 9 families with the P392L mutation and 1 family each with the following mutations: K378X, 390X, and a novel P364S mutation in exon 7, upstream of the UBA. The P392L mutation was found in 9 of 194 (4.6%) patients with sporadic disease. Subjects with SQSTM1 mutations had more extensive disease, but not earlier onset, compared with subjects without mutations. In functional studies, the P364S mutation increased NF-,B activation compared with wildtype SQSTM1 but did not reduce ubiquitin binding. This suggests that increased NF-,B signaling, but not the impairment of ubiquitin binding, may be essential in the pathogenesis of PDB associated with SQSTM1 mutations. [source]


MEK/ERK Signaling Controls Osmoregulation of Nucleus Pulposus Cells of the Intervertebral Disc by Transactivation of TonEBP/OREBP,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2007
Tsung-Ting Tsai
Abstract Earlier studies have shown that intervertebral disc cells express TonEBP, a transcription factor that permits adaptation to osmotic stress and regulates aggrecan gene expression. However, the mechanism of hyperosmotic activation of TonEBP in disc cells is not known. Results of this study show that hypertonic activation of ERK signaling regulates transactivation activity of TonEBP, modulating its function. Introduction: In an earlier report, we showed that tonicity enhancer binding protein (TonEBP) positively regulates aggrecan gene expression in disc cells, thereby autoregulating its osmotic environment. Although these studies indicated that the cells of the nucleus pulposus were optimally adapted to a hyperosmotic state, the mechanism by which the cells transduce the osmotic stress was not delineated. The primary goal of this study was to test the hypothesis that, in a hyperosmotic medium, the extracellular signal-regulated kinase (ERK) signaling pathway regulated TonEBP activity. Materials and Methods: Nucleus pulposus cells were maintained in isotonic or hypertonic media, and MAPK activation and TonEBP expression were analyzed. To study the role of MAPK in regulation of TonEBP function, gel shift and luciferase reporter assays were performed. ERK expression in cells was modulated by using expression plasmids or siRNA, and transactivation domain (TAD)-TonEBP activity was studied. Results: We found that hypertonicity resulted in phosphorylation and activation of ERK1/2 proteins and concomitant activation of C terminus TAD activity of ELK-1, a downstream transcription factor. In hypertonic media, treatment with ERK and p38 inhibitors resulted in downregulation of TonE promoter activity of TauT and HSP-70 and decreased binding of TonEBP to TonE motif. Similarly, forced expression of DN-ERK and DN-p38 in nucleus pulposus cells suppressed TauT and HSP-70 reporter gene activity. Finally, we noted that ERK was needed for transactivation of TonEBP. Expression of DN-ERK significantly suppressed, whereas, WT-ERK and CA-MEK1 enhanced, TAD activity of TonEBP. Experiments performed with HeLa cells indicated that the ERK signaling pathway also served a major role in regulating the osmotic response in nondiscal cells. Conclusions: Together, these studies showed that adaptation of the nucleus pulposus cells to their hyperosmotic milieu is dependent on activation of the ERK and p38- MAPK pathways acting through TonEBP and its target genes. [source]


Processing of Frameshifted Vasopressin Precursors

JOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2000
Evans
Biosynthesis of the vasopressin (VP) prohormone in magnocellular neurones of the hypothalamo-neurohypophysial system comprises endoplasmic reticulum (ER) transit, sorting into the regulated secretory pathway and subsequent processing in the individual proteins VP, neurophysin and a glycoprotein. These processes are severely disrupted in the homozygous diabetes insipidus (di/di) Brattleboro rat, which expresses a mutant VP precursor due to a single nucleotide deletion in the neurophysin region of the VP gene resulting in VP deficiency. Previous studies have shown the presence of additional frameshift mutations in VP transcripts, in solitary magnocellular neurones of the di/di rat due to a GA dinucleotide deletion resulting in two different mutant VP precursors with partly restored reading frame. Frameshifted VP precursors are also expressed in several magnocellular neurones in wild-type rats. In this study, we determined if the +1 frameshifted precursors from di/di and wild-type rats can lead to biosynthesis of the hormone VP. Therefore, eukaryotic expression plasmids containing the frameshifted VP cDNAs were transiently expressed in peptidergic tumour cell lines, and cells were analysed by reversed phase high-performance liquid chromatography and specific radioimmunoassays, and by immunofluoresence. Neuro2A neuroblastoma cells expressing the +1 frameshifted precursors of di/di rats retained products in the cell body. Only precursor or insignificant quantities of neurophysin-immunoreactive products were detected. In contrast, in AtT20 cells, frameshifted VP precursors were at least partly processed to yield the VP peptide, indicating that they have access to the regulated secretory pathway. Comparison between the two cell lines showed a very slow ER transit of the wild-type prohormone combined with inefficient processing in Neuro2A cells. The results show that mutant precursors can reach the regulated secretory pathway if ER transport is sufficiently rapid as in the case of AtT20 cells. This suggests that the di/di rat may regain the capacity to biosynthesize authentic VP through these +1 frameshifted precursors in magnocellular neurones. [source]


IL-1,, an immediate early protein secreted by activated microglia, induces iNOS/NO in C6 astrocytoma cells through p38 MAPK and NF-,B pathways

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2006
Yun-Jung Kim
Abstract In the present study we sought to examine cell,cell interactions by investigating the effects of factors released by stimulated microglia on inducible nitric oxide (NO) synthase (iNOS) induction in astrocytoma cells. After examining the temporal profiles of proinflammatory molecules induced by lipopolysaccharide (LPS) stimulation in BV2 microglial cells, iNOS and IL-1, were observed to be the first immediate-response molecules. Removal of LPS after 3 hr stimulation abrogated NO release, whereas a full induction of IL-1, was retained in BV2 cells. We observed consistently that conditioned medium (CM) from activated microglia resulted in the induction of iNOS in C6 cells, and IL-1, was shown to be a key regulator of iNOS induction. An IL-1,-neutralizing antibody diminished NO induction. Incubation with recombinant IL-1, stimulated NO release to a lesser extent compared to microglial CM; co-treatment of LPS and IL-1, had a potent, synergistic effect on NO release from C6 cells. Transient transfection with MEK kinase 1 (MEKK1) or nuclear factor-kappa B (NF-,B) expression plasmids induced iNOS, and IL-1, further enhanced the MEKK1 response. Furthermore, IL-1,-mediated NO release from C6 cells was significantly suppressed by inhibition of p38 mitogen activated protein kinase (MAPK) or NF-,B by specific chemical inhibitors. Both IL-1, and MEKK1 stimulated p38 and JNK MAPKs, as well as the NF-,B pathway, to induce iNOS in C6 cells. Microglia may represent an anti-tumor response in the central nervous system, which is potentiated by the local secretion of immunomodulatory factors that in turn affects astrocytoma (glioma) cells. A better understanding of microglia,glioma or microglia,astrocyte interactions will help in the design of novel immune-based therapies for brain tumors or neuronal diseases. © 2006 Wiley-Liss, Inc. [source]


Peroxisome Proliferator-Activated Receptors (PPAR) and the Mitochondrial Aldehyde Dehydrogenase (ALDH2) Promoter In Vitro and In Vivo

ALCOHOLISM, Issue 7 2001
David W. Crabb
Background : The aldehyde dehydrogenase 2 (ALDH2) promoter contains a nuclear receptor response element (NRRE) that represents an overlapping direct repeat-1 (DR-1) and -5 (DR-5) element. Because DR-1 elements are preferred binding sites for peroxisome proliferator-activated receptors (PPARs), we tested the hypothesis that PPARs regulate ALDH2 expression. Methods: We examined the ability of PPAR isoforms to bind to the ALDH2 NRRE in electrophoretic mobility shift assays, their ability to activate the transcription of promoter-reporter constructs containing this NRRE, the effect of PPAR ligands on ALDH2 expression in liver, and the role of the PPAR, on the expression of ALDH2 by using PPAR,-null mice. Results: In vitro translated PPARs bound the ALDH NRRE with high affinity. Mutation of the NRRE indicated that binding was mediated by the DR-1 element. Cotransfection of PPAR expression plasmids showed that PPAR, had no effect on expression of heterologous promoter constructs containing the NRRE. PPAR, slightly induced expression, whereas PPAR, repressed basal activity of the promoter and blocked induction by hepatocyte nuclear factor 4. Treatment of rats with the PPAR ligand clofibrate repressed expression of ALDH2 in rats fed either stock rodent chow or a low-protein diet. Consistent with the transfection data, expression of ALDH2 protein was not different in PPAR,-null mice. Treatment of the mice with the PPAR, agonist WY14643 slightly decreased the level of ALDH2 protein in both wild-type and PPAR,-null mice, suggesting that the effect of WY14643 was not mediated by the receptor. Conclusions: These data indicate that ALDH2 is not part of the battery of lipid metabolizing enzymes and proteins regulated by PPAR, [source]


Regulatory sequences of H19 and IGF2 genes in DNA-based therapy of colorectal rat liver metastases

THE JOURNAL OF GENE MEDICINE, Issue 3 2005
Patricia Ohana
Abstract Background Malignant tumors of the liver are among the most common causes of cancer-related death throughout the world. Current therapeutic approaches fail to control the disease in most cases. This study seeks to explore the potential utility of transcriptional regulatory sequences of the H19 and insulin growth factor 2 (IGF2) genes for directing tumor-selective expression of a toxin gene (A fragment of diphtheria toxin), delivered by non-viral vectors. Methods The therapeutic potential of the toxin vectors driven by the H19 and the IGF2-P3 regulatory sequences was tested in a metastatic model of rat CC531 colon carcinoma in liver. Results Intratumoral injection of these vectors into colon tumors implanted in the liver of rats induced an 88% and a 50% decrease respectively in the median tumor volume as compared with the control groups. This therapeutic action was accompanied by increased necrosis of the tumor. Importantly, no signs of toxicity were detected in healthy animals after their treatment by the toxin expression vectors. Conclusions DT-A was preferentially expressed in liver metastases after being transfected with H19 or IGF2-P3 promoter-driven DT-A expression plasmids, causing a very significant inhibition of tumor growth as a result of its cytotoxic effect. Our findings strongly support the feasibility of our proposed therapeutic strategy, which may contribute to open new gene therapeutic options for human liver metastases. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Development and characterization of a minimal inducible packaging cell line for simian immunodeficiency virus-based lentiviral vectors

THE JOURNAL OF GENE MEDICINE, Issue 4 2002
Seraphin Kuate
Abstract Background Lentiviral vectors allow gene transfer into non-dividing cells. Further development of these vector systems requires stable packaging cell lines that enable adequate safety testing. Methods To generate a packaging cell line for vectors based on simian immunodeficiency virus (SIV), expression plasmids were constructed that contain the codon-optimized gag-pol gene of SIV and the gene for the G protein of vesicular stomatitis virus (VSV-G) under the control of an ponasterone-inducible promoter. Stable cell lines expressing these packaging constructs were established and characterized. Results The RT activity and vector titers of cell clones stably transfected with the inducible gag-pol expession plasmid could be induced by ponasterone by more than a factor of 1000. One of these clones was subsequently transfected with the ponasterone-inducible VSV-G expression plasmid to generate packaging cells. Clones of the packaging cells were screened for vector production by infection with an SIV vector and subsequent induction by ponasterone. In the supernatant of selected ponasterone-induced producer clones vector titers of more than 1×105 transducing units/ml were obtained. Producer cell clones were stable for at least five months, as tested by vector production. Conclusions The packaging cells described should be suitable for most preclinical applications of SIV-based vectors. By avoiding regions of high homology between the vector and the packaging constructs, the design of the SIV packaging cell line should reduce the risk of transfer of packaging genes to target cells and at the same time provide flexibility with respect to the SIV vector constructs that can be packaged. Copyright © 2002 John Wiley & Sons, Ltd. [source]


SirT1 enhances survival of human osteoarthritic chondrocytes by repressing protein tyrosine phosphatase 1B and activating the insulin-like growth factor receptor pathway

ARTHRITIS & RHEUMATISM, Issue 5 2010
Viktoria Gagarina
Objective The protein deacetylase SirT1 inhibits apoptosis in a variety of cell systems by distinct mechanisms, yet its role in chondrocyte death has not been explored. We undertook the present study to assess the role of SirT1 in the survival of osteoarthritic (OA) chondrocytes in humans. Methods SirT1, protein tyrosine phosphatase 1B (PTP1B), and PTP1B mutant expression plasmids as well as SirT1 small interfering RNA (siRNA) and PTP1B siRNA were transfected into primary human chondrocytes. Levels of apoptosis were determined using flow cytometry, and activation of components of the insulin-like growth factor receptor (IGFR)/Akt pathway was assessed using immunoblotting. OA and normal knee cartilage samples were subjected to immunohistochemical analysis. Results Expression of SirT1 in chondrocytes led to increased chondrocyte survival in either the presence or the absence of tumor necrosis factor ,/actinomycin D, while a reduction of SirT1 by siRNA led to increased chondrocyte apoptosis. Expression of SirT1 in chondrocytes led to activation of IGFR and the downstream kinases phosphatidylinositol 3-kinase, phosphoinosite-dependent protein kinase 1, mTOR, and Akt, which in turn phosphorylated MDM2, inhibited p53, and blocked apoptosis. Activation of IGFR occurs at least in part via SirT1-mediated repression of PTP1B. Expression of PTP1B in chondrocytes increased apoptosis and reduced IGFR phosphorylation, while down-regulation of PTP1B by siRNA significantly decreased apoptosis. Examination of cartilage from normal donors and OA patients revealed that PTP1B levels are elevated in OA cartilage in which SirT1 levels are decreased. Conclusion For the first time, it has been demonstrated that SirT1 is a mediator of human chondrocyte survival via down-regulation of PTP1B, a potent proapoptotic protein that is elevated in OA cartilage. [source]


Expression, purification, and analysis of unknown translation factors from Escherichia coli: A synthesis approach

BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, Issue 1 2010
Justin D. Walter
Abstract New approaches are currently being developed to expose biochemistry and molecular biology undergraduates to a more interactive learning environment. Here, we propose a unique project-based laboratory module, which incorporates exposure to biophysical chemistry approaches to address problems in protein chemistry. Each of the experiments described herein contributes to the stepwise process of isolating, identifying, and analyzing a protein involved in a central biological process, prokaryotic translation. Students are provided with expression plasmids that harbor an unknown translation factor, and it is their charge to complete a series of experiments that will allow them to develop hypotheses for discovering the identity of their unknown (from a list of potential candidates). Subsequent to the identification of their unknown translation factor, a series of protein unfolding exercises are performed employing circular dichroism and fluorescence spectroscopies, allowing students to directly calculate thermodynamic parameters centered around determining the equilibrium constant for unfolding as a function of denaturant (temperature or chemical). The conclusion of this multi-part laboratory exercise consists of both oral and written presentations, emphasizing synthesis of the roles of each translation factor during the stepwise process of translation. [source]


Using RNA interference to identify the different roles of SMAD2 and SMAD3 in NIH/3T3 fibroblast cells

CELL BIOCHEMISTRY AND FUNCTION, Issue 5 2008
Rong Zheng
Abstract Smad proteins are principal intracellular signaling mediators of transforming growth factor , (TGF-,) that regulate a wide range of biological processes. However, the identities of Smad partners mediating TGF-, signaling are not fully understood. We firstly examined the expression of Smad2 and Smad3 induced by TGF-, 1 in normal NIH/3T3 cells. The expression of Smad2 and Smad3 was assessed by RT-PCR and Western blotting. The results showed that the expression of Smad2 was increased after treatment with TGF-,I, but Smad3 was more sensitive to TGF-,I than Smad2. RNA interference (RNAi) provides a new approach for elucidation of gene function. Use of hairpin siRNA expression vectors for RNAi has provided a rapid and versatile method for assessing gene function in mammalian cells. Here, we have constructed Smad2 and Smad3 hairpin siRNA expression plasmids, and then transfected them into mouse NIH/3T3 cells. Endogenous Smad2 and Smad3 proteins decreased significantly at 48,h after transfection. We found the expression of Smad3 in Smad2-depleted cells was increased, however, the expression of Smad2 in Smad3-depleted cells was not changed. Consistently, the expression of Smad4 mRNA was also attenuated in Smad3-depleted cells. From these data, we suggest that Smad3, but not Smad2, may play a key role in TGF-, signaling. Copyright © 2008 John Wiley & Sons, Ltd. [source]