Home About us Contact | |||
Expression Measurements (expression + measurement)
Selected AbstractsLocation analysis of DNA-bound proteins at the whole-genome level: untangling transcriptional regulatory networksBIOESSAYS, Issue 6 2001Béatrice Nal In this post-sequencing era, geneticists can focus on functional genomics on a much larger scale than ever before. One goal is the discovery and elucidation of the intricate genetic networks that co-ordinate transcriptional activation in different regulatory circuitries. High-throughput gene expression measurement using DNA arrays has thus become routine strategy. This approach, however, does not directly identify gene loci that belong to the same regulatory group; e.g., those that are bound by a common (set of) transcription factor(s). Working in yeast, two groups have recently published an elegant method that could circumvent this problem, by combining chromatin immunoprecipitation and DNA microarrays.(1,2) The method is likely to provide a powerful tool for the dissection of global regulatory networks in eukaryotic cells. BioEssays 23:473,476, 2001. © 2001 John Wiley & Sons, Inc. [source] Bayesian classification of tumours by using gene expression dataJOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES B (STATISTICAL METHODOLOGY), Issue 2 2005Bani K. Mallick Summary., Precise classification of tumours is critical for the diagnosis and treatment of cancer. Diagnostic pathology has traditionally relied on macroscopic and microscopic histology and tumour morphology as the basis for the classification of tumours. Current classification frameworks, however, cannot discriminate between tumours with similar histopathologic features, which vary in clinical course and in response to treatment. In recent years, there has been a move towards the use of complementary deoxyribonucleic acid microarrays for the classi-fication of tumours. These high throughput assays provide relative messenger ribonucleic acid expression measurements simultaneously for thousands of genes. A key statistical task is to perform classification via different expression patterns. Gene expression profiles may offer more information than classical morphology and may provide an alternative to classical tumour diagnosis schemes. The paper considers several Bayesian classification methods based on reproducing kernel Hilbert spaces for the analysis of microarray data. We consider the logistic likelihood as well as likelihoods related to support vector machine models. It is shown through simulation and examples that support vector machine models with multiple shrinkage parameters produce fewer misclassification errors than several existing classical methods as well as Bayesian methods based on the logistic likelihood or those involving only one shrinkage parameter. [source] Gene expression measurements in the context of epidemiological studiesALLERGY, Issue 12 2008C. Bieli Background:, Gene expression measurements became an attractive tool to assess biological responses in epidemiological studies. However, collection of blood samples poses various technical problems. We used gene expression data from two epidemiological studies to evaluate differences between sampling methods, comparability of two methods for measuring RNA levels and stability of RNA samples over time. Methods:, For the PARSIFAL study, PBLC of 1155 children were collected using EDTA tubes in two countries. In the PASTURE study, tubes containing RNA-stabilizing solutions (PAXgene® Blood RNA Tubes; PreAnalytiX) were used to collect cord blood leucocytes of 982 children in five countries. Real-time PCR (conventional single tube assay and high-throughput low density arrays) was used to quantify expression of various innate immunity genes. In 77 PARSIFAL samples, gene expression was measured repeatedly during prolonged storage. Results:, In PARSIFAL (EDTA tubes) the median RNA yield after extraction significantly differed between the two centres (70 and 34 ng/,l). Collecting blood into an RNA-stabilizing solution markedly reduced differences in RNA yield in PASTURE (range of medians 91,107 ng/,l). The agreement [Spearman rank correlation (r)] between repeated measurements of gene expression decreased with increasing storage time [e.g., for CD14: r (first/second measurement) = 0.35; r (first/third measurement) = 0.03]. RNA levels measured with either the conventional method or low-density arrays were comparable (r > 0.9). Conclusion:, Collecting blood samples into tubes containing an RNA-stabilizing solution increases RNA yield and reduces its variability. Long-term storage of samples may lead to RNA degradation, requiring special attention in longitudinal studies. [source] Correlation of tracheal smooth muscle function with structure and protein expression during early development,PEDIATRIC PULMONOLOGY, Issue 5 2007Aaron B. Cullen MD Abstract With increased survival of premature infants, understanding the impact of development on airway function and structure is imperative. Airway smooth muscle plays a primary role in the modulation of airway function. The purpose of this study is to correlate the functional maturation of airway smooth muscle during the perinatal period with structural alterations at the cellular, ultrastructural, and molecular levels. Length-tension and dose-response analyses were performed on tracheal rings acquired from preterm and term newborn lambs. Subsequent structural analyses included isolated airway smooth muscle cell length, electron microscopy, and myosin heavy chain isoform expression measurements. Functionally the compliance, contractility, and agonist sensitivity of the tracheal rings matured during preterm to term development. Structurally, isolated cell lengths and electron microscopic ultrastructure were not significantly altered during perinatal development. However, expression of myosin heavy chain isoforms increased significantly across the age range analyzed, correlating with the maturational increase in smooth muscle contractility. In conclusion, the developmental alterations in tracheal function appear due, in part, to enhanced smooth muscle myosin heavy chain expression. Pediatr Pulmonol. 2007; 42:421,432. © 2007 Wiley-Liss, Inc. [source] Global Gene Expression Differences Associated with Changes in Glycolytic Flux and Growth Rate in Escherichia coli during the Fermentation of Glucose and XyloseBIOTECHNOLOGY PROGRESS, Issue 1 2002Ramon Gonzalez The simplicity of the fermentation process (anaerobic with pH, temperature, and agitation control) in ethanologenic Escherichia coli KO11 and LY01 makes this an attractive system to investigate the utility of gene arrays for biotechnology applications. By using this system, gene expression, glycolytic flux, and growth rate have been compared in glucose-grown and xylose-grown cells. Although the initial metabolic steps differ, ethanol yields from both sugars were essentially identical on a weight basis, and little carbon was diverted to biosynthesis. Expression of only 27 genes changed by more than 2-fold in both strains. These included induction of xylose-specific operons ( xylE, xylFGHR, and xylAB) regulated by XylR and the cyclic AMP,CRP system and repression of Mlc-regulated genes encoding glucose uptake ( ptsHIcrr, ptsG) and mannose uptake ( manXYZ) during growth on xylose. However, expression of genes encoding central carbon metabolism and biosynthesis differed by less than 2-fold. Simple statistical methods were used to investigate these more subtle changes. The reproducibility (coefficient of variation of 12%) of expression measurements (mRNA as cDNA) was found to be similar to that typically observed for in vitro measurements of enzyme activities. Using Studentapos;s t test, many smaller but significant sugar-dependent changes were identified ( p < 0.05 in both strains). A total of 276 genes were more highly expressed during growth on xylose; 307 genes were more highly expressed with glucose. Slower growth (lower ATP yield) on xylose was accompanied by decreased expression of 62 genes concerned with the biosynthesis of small molecules (amino acids, nucleotides, cofactors, and lipids), transcription, and translation; 5 such genes were expressed at a higher level. In xylose-grown cells, 90 genes associated with the transport, catabolism, and regulation of pathways for alternative carbon sources were expressed at higher levels than in glucose-grown cells, consistent with a relaxation of control by the cyclic AMP,CRP regulatory system. Changes in expression of genes encoding the Embden,Meyerhof,Parnas (EMP) pathway were in excellent agreement with calculated changes in flux for individual metabolites. Flux through all but one step, pyruvate kinase, was predicted to be higher during glucose fermentation. Expression levels (glucose/xylose) were higher in glucose-grown cells for all EMP genes except the isoenzymes encoding pyruvate kinase ( pykA and pykF). Expression of both isoenzymes was generally higher during xylose fermentation but statistically higher in both strains only for pykF encoding the isoenzyme activated by fructose-6-phosphate, a key metabolite connecting pentose metabolism to the EMP pathway. The coordinated changes in expression of genes encoding the EMP pathway suggest the presence of a common regulatory system and that flux control within the EMP pathway may be broadly distributed. In contrast, expression levels for genes encoding the Pentose,Phosphate pathway did not differ significantly between glucose-grown and xylose-grown cells. [source] |