Expression Increases (expression + increase)

Distribution by Scientific Domains


Selected Abstracts


Hypothalamic Vasopressin Gene Expression Increases in Both Males and Females Postpartum in a Biparental Rodent

JOURNAL OF NEUROENDOCRINOLOGY, Issue 2 2000
Z. X. Wang
In previous studies, the closely related neuropeptide hormones oxytocin and vasopressin have been implicated in the central mediation of parental behaviour. Several studies in rats and sheep have demonstrated a role for oxytocin in the initiation of maternal behaviour. Recently, a few studies in a biparental species, the prairie vole (Microxytocinus ochrogaster) have suggested that vasopressin is important for paternal care. The present study investigated this latter possibility by measuring changes in vasopressin and oxytocin hypothalamic gene expression 1 day and 6 days following parturition in prairie voles which show paternal care and in montane voles (M. montanus) which lack paternal care. In prairie voles, vasopressin gene expression increased in both males and females postpartum, relative to sexually naive controls. In the non-paternal montane vole, no change in vasopressin gene expression was observed in either sex. In contrast to this species difference in vasopressin gene expression, hypothalamic oxytocin gene expression increased in both prairie and montane vole females, but not in males of either species. To augment measures of gene expression, we assessed vasopressin (V1a) and oxytocin receptor binding in both species. Although forebrain vasopressin V1a receptor binding was not altered following parturition in either species, oxytocin receptor binding increased in the ventromedial nucleus of the hypothalamus in females, but not males, in both prairie and montane voles. In summary, vasopressin gene expression increases in both males and females postpartum in a biparental species and oxytocin gene expression and receptor binding increase selectively in females. These results are consistent with earlier reports of a role for vasopressin in paternal care and for oxytocin in maternal behaviour. [source]


Wnt6 expression in epidermis and epithelial tissues during Xenopus organogenesis

DEVELOPMENTAL DYNAMICS, Issue 3 2008
Danielle L. Lavery
Abstract Here, we report the localization within embryonic tissues of xWnt6 protein; together with the temporal and spatial expression of Xenopus laevis Wnt6 mRNA. Wnt6 expression in Xenopus embryos is low until later stages of neurulation, when it is predominantly found in the surface ectoderm. Wnt6 expression increases during early organogenesis in the epidermis overlaying several developing organs, including the eye, heart, and pronephros. At later stages of development, Wnt6 mRNA and protein generally localize in epithelial tissues and specifically within the epithelial tissues of these developing organs. Wnt6 localization correlates closely with sites of both epithelial to mesenchymal transformations and mesenchymal to epithelial transformations. Xenopus Wnt6 sequence and its expression pattern are highly conserved with other vertebrates. Xenopus embryos, therefore, provide an excellent model system for investigating the function of vertebrate Wnt6 in organ development and regulation of tissue architecture. Developmental Dynamics 237:768,779, 2008. © 2008 Wiley-Liss, Inc. [source]


A human-specific TNF-responsive promoter for Goodpasture antigen-binding protein

FEBS JOURNAL, Issue 20 2005
Froilán Granero
The Goodpasture antigen-binding protein, GPBP, is a serine/threonine kinase whose relative expression increases in autoimmune processes. Tumor necrosis factor (TNF) is a pro-inflammatory cytokine implicated in autoimmune pathogenesis. Here we show that COL4A3BP, the gene encoding GPBP, maps head-to-head with POLK, the gene encoding for DNA polymerase kappa (pol ,), and shares with it a 140-bp promoter containing a Sp1 site, a TATA-like element, and a nuclear factor kappa B (NF,B)-like site. These three elements cooperate in the assembly of a bidirectional transcription complex containing abundant Sp1 and little NF,B that is more efficient in the POLK direction. Tumour necrosis factor cell induction is associated with Sp1 release, NF,B recruitment and assembly of a complex comparatively more efficient in the COL4A3BP direction. This is accomplished by competitive binding of Sp1 and NF,B to a DNA element encompassing a NF,B-like site that is pivotal for the 140-bp promoter to function. Consistently, a murine homologous DNA region, which contains the Sp1 site and the TATA-like element but is devoid of the NF,B-like site, does not show transcriptional activity in transient gene expression assays. Our findings identify a human-specific TNF-responsive transcriptional unit that locates GPBP in the signalling cascade of TNF and substantiates previous observations, which independently related TNF and GPBP with human autoimmunity. [source]


Schwann cell caveolin-1 expression increases during myelination and decreases after axotomy

GLIA, Issue 3 2002
Daniel D. Mikol
Abstract The caveolins are a family of related proteins that form the structural framework of caveolae. They have been implicated in the regulation of signal transduction, cell cycle control, and cellular transport processes, particularly cholesterol trafficking. Caveolin-1 is expressed by a variety of cell types, including Schwann cells, although its expression is greatest in differentiated cell types, such as endothelial cells and adipocytes. In the present work, we characterize caveolin-1 expression both during rat sciatic nerve development and after axotomy. Schwann cells express little caveolin-1 on postnatal days 1 and 6. By P30, myelinating Schwann cells express caveolin-1, which is localized in the outer/abaxonal myelin membranes as well as intracellularly. After axotomy, Schwann cell caveolin-1 expression in the distal nerve stump decreases as Schwann cells revert to a premyelinating (p75-positive) phenotype; residual caveolin-1 within the nerve largely localizes to myelin debris and infiltrating macrophages. We speculate that caveolin-1 plays a role in the biology of myelinating Schwann cells. GLIA 38:191,199, 2002. © 2002 Wiley-Liss, Inc. [source]


Transcription of major histocompatibility complex class I (Kb) and transporter associated with antigen processing 1 and 2 genes is up-regulated with age

IMMUNOLOGY, Issue 3 2004
Alain G. Assounga
Summary The transporter associated with antigen processing 1 and 2 (TAP1 and TAP2) genes belong to the ATP-binding cassette family of transporter genes. They provide peptides necessary for the assembly of major histocompatibility complex (MHC) class I molecules by transporting these peptides into the endoplasmic reticulum. As MHC class I protein expression increases with age, we have explored the effect of age on the transcription of MHC class I genes (Kb) and TAP1 and TAP2 genes in C57BL/6 mice. Blood and spleen lymphocytes were isolated from mice aged from 3 months to over 24 months. RNA was extracted and mRNA for Kb, TAP1, TAP2 was quantified using slot-blot hybridization followed by densitometry. There was a parallel age-related increase (1·5-fold) in blood lymphocyte mRNA of these genes from 3 months to 21 months. In mice over 24 months old there was a decrease in Kb and TAP1 mRNA, but an increase in TAP2 mRNA. In spleen lymphocytes an age-related increase in all three mRNA species occurred throughout life. While MHC class I and Tap genes underwent very similar age-related changes, MHC class I mRNA was about 50 times more abundant than either TAP1 or TAP2 mRNA. [source]


Expression of insulin-like growth factor-binding protein 2 in melanocytic lesions

JOURNAL OF CUTANEOUS PATHOLOGY, Issue 10 2003
Huamin Wang
Background:, Insulin-like growth factor-1 (IGF-1) is one of the most critical proteins required for the survival, migration, and growth of melanoma cells. IGF-binding protein 2 (IGFBP2), which binds and regulates the function of IGF-1, is upregulated in a dose-dependent manner in melanoma cells treated with IGF-1, suggesting a possible role of IGFBP2 in the pathogenesis of melanoma. Methods:, Tissue microarrays were constructed using formalin-fixed, paraffin-embedded archival tissue blocks from 94 melanocytic lesions: 20 benign nevi, 20 dysplastic nevi, 23 primary melanomas, and 31 metastatic melanomas. IGFBP2 expression was evaluated immunohistochemically using a polyclonal antibody against the C-terminus of IGFBP2. The number of cells and labeling intensity were assessed semiquantitatively. Results:, Positive IGFBP2 labeling was observed in 5.0% of benign nevi, which was significantly lower than in dysplastic nevi (35.0%), primary melanomas (52.2%), or metastatic melanomas (54.8%) (p < 0.05). Among the IGFBP2-positive cases, moderate-to-strong immunostaining was observed in 64.7% of metastatic melanomas and 33.3% of primary melanomas. But none of the dysplastic nevi had moderate-to-strong immunostaining (p < 0.05). Conclusions:, Our study shows that IGFBP2 expression increases from benign and dysplastic nevi to primary and metastatic melanomas and suggests that it may play a role in melanoma progression. [source]


Recent Discoveries on the Control of Gonadotrophin-Releasing Hormone Neurones in Nonhuman Primates

JOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2010
E. Terasawa
Since Ernst Knobil proposed the concept of the gonadotrophin-releasing hormone (GnRH) pulse-generator in the monkey hypothalamus three decades ago, we have made significant progress in this research area with cellular and molecular approaches. First, an increase in pulsatile GnRH release triggers the onset of puberty. However, the question of what triggers the pubertal increase in GnRH is still unclear. GnRH neurones are already mature before puberty but GnRH release is suppressed by a tonic GABA inhibition. Our recent work indicates that blocking endogenous GABA inhibition with the GABAA receptor blocker, bicuculline, dramatically increases kisspeptin release, which plays an important role in the pubertal increase in GnRH release. Thus, an interplay between the GABA, kisspeptin, and GnRH neuronal systems appears to trigger puberty. Second, cultured GnRH neurones derived from the olfactory placode of monkey embryos exhibit synchronised intracellular calcium, [Ca2+]i, oscillations and release GnRH in pulses at approximately 60-min intervals after 14 days in vitro (div). During the first 14 div, GnRH neurones undergo maturational changes from no [Ca2+]i oscillations and little GnRH release to the fully functional state. Recent work also shows GnRH mRNA expression increases during in vitro maturation. This mRNA increase coincides with significant demethylation of a CpG island in the GnRH 5,-promoter region. This suggests that epigenetic differentiation occurs during GnRH neuronal maturation. Third, oestradiol causes rapid, direct, excitatory action in GnRH neurones and this action of oestradiol appears to be mediated through a membrane receptor, such as G-protein coupled receptor 30. [source]


Hypothalamic Vasopressin Gene Expression Increases in Both Males and Females Postpartum in a Biparental Rodent

JOURNAL OF NEUROENDOCRINOLOGY, Issue 2 2000
Z. X. Wang
In previous studies, the closely related neuropeptide hormones oxytocin and vasopressin have been implicated in the central mediation of parental behaviour. Several studies in rats and sheep have demonstrated a role for oxytocin in the initiation of maternal behaviour. Recently, a few studies in a biparental species, the prairie vole (Microxytocinus ochrogaster) have suggested that vasopressin is important for paternal care. The present study investigated this latter possibility by measuring changes in vasopressin and oxytocin hypothalamic gene expression 1 day and 6 days following parturition in prairie voles which show paternal care and in montane voles (M. montanus) which lack paternal care. In prairie voles, vasopressin gene expression increased in both males and females postpartum, relative to sexually naive controls. In the non-paternal montane vole, no change in vasopressin gene expression was observed in either sex. In contrast to this species difference in vasopressin gene expression, hypothalamic oxytocin gene expression increased in both prairie and montane vole females, but not in males of either species. To augment measures of gene expression, we assessed vasopressin (V1a) and oxytocin receptor binding in both species. Although forebrain vasopressin V1a receptor binding was not altered following parturition in either species, oxytocin receptor binding increased in the ventromedial nucleus of the hypothalamus in females, but not males, in both prairie and montane voles. In summary, vasopressin gene expression increases in both males and females postpartum in a biparental species and oxytocin gene expression and receptor binding increase selectively in females. These results are consistent with earlier reports of a role for vasopressin in paternal care and for oxytocin in maternal behaviour. [source]


Analysis of neural potential of human umbilical cord blood,derived multipotent mesenchymal stem cells in response to a range of neurogenic stimuli

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 9 2008
Isabel Zwart
Abstract We investigated the neurogenic potential of full-term human umbilical cord blood (hUCB),derived multipotent mesenchymal stem cells (MSCs) in response to neural induction media or coculture with rat neural cells. Phenotypic and functional changes were assessed by immunocytochemistry, RT-PCR, and whole-cell patch-clamp recordings. Naive MSCs expressed both mesodermal and ectodermal markers prior to neural induction. Exposure to retinoic acid, basic fibroblast growth factor, or cyclic adenosine monophosphate (cAMP) did not stimulate neural morphology, whereas exposure to dibutyryl cAMP and 3-isobutyl-1-methylxanthine stimulated a neuron-like morphology but also appeared to be cytotoxic. All protocols stimulated increases in expression of the neural precursor marker nestin, but expression of mature neuronal or glial markers MAP2 and GFAP was not observed. Nestin expression increases were serum level dependent. Electrophysiological properties of MSCs were studied with whole-cell patch-clamp recordings. The MSCs possessed no ionic currents typical of neurons before or after neural induction protocols. Coculture of hUCB-derived MSCs and rat neural cells induced some MSCs to adopt an astrocyte-like morphology and express GFAP protein and mRNA. Our data suggest hUCB-derived MSCs do not transdifferentiate into mature functioning neurons in response to the above neurogenic protocols; however, coculture with rat neural cells led to a minority adopting an astrocyte-like phenotype. © 2008 Wiley-Liss, Inc. [source]


cpg15 and cpg15-2 constitute a family of activity-regulated ligands expressed differentially in the nervous system to promote neurite growth and neuronal survival

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 5 2008
Tadahiro Fujino
Abstract Many ligands that affect nervous system development are members of gene families that function together to coordinate the assembly of complex neural circuits. cpg15/neuritin encodes an extracellular ligand that promotes neurite growth, neuronal survival, and synaptic maturation. Here we identify cpg15-2 as the only paralogue of cpg15 in the mouse and human genome. Both genes are expressed predominantly in the nervous system, where their expression is regulated by activity. cpg15-2 expression increases by more than twofold in response to kainate-induced seizures and nearly fourfold in the visual cortex in response to 24 hours of light exposure following dark adaptation. cpg15 and cpg15-2 diverge in their spatial and temporal expression profiles. cpg15-2 mRNA is most abundant in the retina and the olfactory bulb, as opposed to the cerebral cortex and the hippocampus for cpg15. In the retina, they differ in their cell-type specificity. cpg15 is expressed in retinal ganglion cells, whereas cpg15-2 is predominantly in bipolar cells. Developmentally, onset of cpg15-2 expression is delayed compared with cpg15 expression. CPG15-2 is glycosylphosphatidylinositol (GPI) anchored to the cell membrane and, like CPG15, can be released in a soluble-secreted form, but with lower efficiency. CPG15 and CPG15-2 were found to form homodimers and heterodimers with each other. In hippocampal explants and dissociated cultures, CPG15 and CPG15-2 promote neurite growth and neuronal survival with similar efficacy. Our findings suggest that CPG15 and CPG15-2 perform similar cellular functions but may play distinct roles in vivo through their cell-type- and tissue-specific transcriptional regulation. J. Comp. Neurol. 507:1831,1845, 2008. © 2008 Wiley-Liss, Inc. [source]


Nuclear STK15 expression is associated with aggressive behaviour of oral carcinoma cells in vivo and in vitro,

THE JOURNAL OF PATHOLOGY, Issue 1 2010
Shou-Yen Kao
Abstract Oral squamous cell carcinoma (OSCC) is one of the most commonly diagnosed cancers worldwide. Chromosome 20q is a hotspot for gene amplification in OSCC and the serine/threonine kinase STK15 (also named Aurora-A) maps to 20q13. The amplification and over-expression of STK15 is common in neoplasia but the functional and clinical impact of STK15 in OSCC remains poorly understood. STK15 copy number is amplified in 12% of OSCCs and nuclear STK15 protein expression increases with tumour progression. In vivo elevated nuclear STK15 protein expression is significantly associated with the worse prognosis of OSCC patients. The combination of high nuclear STK15 and Ki-67 expression has a 2.55-fold hazard for cancer-associated mortality. In vitro knockdown of STK15 reduced the oncogenic phenotypes of OECM-1 cells. Injection of lentivirus carrying shRNA vectors against STK15 significantly reduced the growth of SAS xenografts on nude mice. Knockdown of STK15 also induced autophagy and apoptosis of OSCC cells. Our data provide evidence that STK15 is oncogenic for OSCC and that its nuclear expression is a predictor of clinical behaviour. Knockdown of STK15 could be a potential therapeutic option in OSCC and other tumours. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]