Home About us Contact | |||
Expressing EGFP (expressing + egfp)
Selected AbstractsDynamics of a Transgene Expression in Acute Rat Brain Slices Transfected with Adenoviral VectorsEXPERIMENTAL PHYSIOLOGY, Issue 4 2003C. E. L. Stokes We present a quantitative account of the expression dynamics of a transgene (enhanced green fluorescent protein, EGFP) in acute brain slices transfected with an adenoviral vector (AVV) under control of the human cytomegalovirus (HCMV) promoter. Micromolar concentrations of EGFP could be detected in brainstem and hippocampal slices as early as 7 h after in vitro transfection with a viral titre of 4.4 × 109 plaque-forming units (pfu) ml,1. Although initially EGFP appeared mainly in glia, it could be detected in neurones with longer incubation times of 10-12 h. However, fluorescence was never detected within some populations of neurones, such as hippocampal pyramidal cells, or within the hypoglossal motor nucleus. The density of cells expressing EGFP peaked at 10 h and then decreased, possibly suggesting that high concentrations of EGFP are toxic. The age of the animal significantly affected the speed of EGFP accumulation: after 10 h of incubation in 30-day-old rats only 4.88 ± 0.51 cells/10 000 ,m2 were fluorescent compared to 7.28 ± 0.39 cells/10 000 ,m2 in 12-day-old rats (P < 0.05). HCMV promoter-driven transgene expression depended on the activity of protein kinase A, and was depressed with a cAMP/protein kinase A antagonist (20 ,M Rp-cAMPS; P < 0.0005). This indicates that expression of HCMV-driven constructs is likely to be skewed towards cellular populations where cAMP-dependent signalling pathways are active. We conclude that acute transfection of brain slices with AVVs within hours causes EGFP expression in micromolar concentrations and that such transfected cells may remain viable for use in physiological experiments. [source] Transgenic sperm produced by electrotransfection and allogeneic transplantation of chicken fetal spermatogonial stem cellsMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2010Fei Yu To study self-renewal, genetic modification, and differentiation of avian spermatogonial stem cells (SSCs), we isolated chicken SSCs from fetal testes on the 16th hatching day via enzyme digestion, and then cultured the SSCs over 2 months after purification in vitro. SSCs were identified by alkaline phosphatase staining and SSEA-1 fluorescence. The EGFP gene was transfected into SSCs by three different methods: electroporation, liposome transfer and calcium acid phosphate precipitation. The transfection rate and cell survival rate using electroporation were higher than when using liposomes or calcium acid phosphate (20.52% vs. 9.75% and 5.61%; 69.86% vs. 65.00% and 51.16%, respectively). After selection with G418 for 8 days, the transgenic SSCs were transplanted into the testes of cocks treated with busulfan. Twenty-five days after transplantation, the recipients' semen was light ivory in color, and the density of spermatozoa was 3.87 (×107/ml), with 4.25% expressing EGFP. By 85 days after transplantation, the number of spermatozoa increased to 32.7 (×107/ml) and the rate of EGFP expression was 16.25%. Frozen sections of the recipients' testes showed that transgenic SSCs were located on the basal membrane of the seminiferous tubules and differentiated into spermatogenic cells at different stages. The EGFP gene was successfully amplified from the DNA of all recipients' semen samples. Mol. Reprod. Dev. 77: 340,347, 2010. © 2010 Wiley-Liss, Inc. [source] The proximal promoter governs germ cell-specific expression of the mouse glutathione transferase mGstm5 geneMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2009Hironari Dehari To explain the tissue-selective expression patterns of a distinct subclass of glutathione S -transferase (GST), transgenic mice expressing EGFP under control of a 2 kb promoter sequence in the 5,-flanking region of the mGstm5 gene were produced. The intent of the study was to establish whether the promoter itself or whether posttranscriptional mechanisms, particularly at the levels of mRNA translation and stability or protein targeting, based on unique properties of mGSTM5, determine the restricted expression pattern. Indeed, the transgene expression was limited to testis as the reporter was not detected in somatic tissues such as brain, kidney or liver, indicating that the mGstm5 proximal promoter is sufficient to target testis-specific expression of the gene. EGFP expression was also more restricted vis-a-vis the natural mGstm5 gene and exclusively found in germ but not in somatic cells. Real-time quantitative PCR (qPCR) data were consistent with alternate transcription start sites in which the promoter region of the natural mGstm5 gene in somatic cells is part of exon 1 of the germ cell transcript. Thus, the primary transcription start site for mGstm5 is upstream of a TATA box in testis and downstream of this motif in somatic cells. The 5, flanking sequence of the mGstm5 gene imparts germ cell-specific transcription. Mol. Reprod. Dev. 76: 379,388, 2009. © 2008 Wiley-Liss, Inc. [source] Zebrafish sp7:EGFP: A transgenic for studying otic vesicle formation, skeletogenesis, and bone regenerationGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 8 2010April DeLaurier Adult transgenic zebrafish expressing eGFP under the control of the zinc finger transcription factor Sp7 gene, which is expressed in osteoblasts but not chondrocytes. In this line, eGFP expression recapitulates the endogenous gene pattern of expression in the otic placode, otic vesicle and developing skeletal structures. GFP-positive cells are also observed in adult skeletal structures and in regenerating fins. This transgenic line will be a very useful tool for studying otic development and the development and regeneration of the skeleton. See the article by DeLaurier et al. in this issue. [source] |