Home About us Contact | |||
Expressed Sequence (expressed + sequence)
Terms modified by Expressed Sequence Selected AbstractsGenetic variability is unrelated to growth and parasite infestation in natural populations of the European eel (Anguilla anguilla)MOLECULAR ECOLOGY, Issue 22 2009J. M. PUJOLAR Abstract Positive correlations between individual genetic heterozygosity and fitness-related traits (HFCs) have been observed in organisms as diverse as plants, marine bivalves, fish or mammals. HFCs are not universal and the strength and stability of HFCs seem to be variable across species, populations and ages. We analysed the relationship between individual genetic variability and two different estimators of fitness in natural samples of European eel, growth rate (using back-calculated length-at-age 1, 2 and 3) and parasite infestation by the swimbladder nematode Anguillicola crassus. Despite using a large data set of 22 expressed sequence tags-derived microsatellite loci and a large sample size of 346 individuals, no heterozygote advantage was observed in terms of growth rate or parasite load. The lack of association was evidenced by (i) nonsignificant global HFCs, (ii) a Multivariate General Linear Model showing no effect of heterozygosity on fitness components, (iii) single-locus analysis showing a lower number of significant tests than the expected false discovery rate, (iv) sign tests showing only a significant departure from expectations at one component, and, (v) a random distribution of significant single-locus HFCs that was not consistent across fitness components or sampling sites. This contrasts with the positive association observed in farmed eels in a previous study using allozymes, which can be explained by the nature of the markers used, with the allozyme study including many loci involved in metabolic energy pathways, while the expressed sequence tags-linked microsatellites might be located in genes or in the proximity of genes uncoupled with metabolism/growth. [source] Expressed sequence tag-derived microsatellites for the cool-water marine copepod Calanus finmarchicusMOLECULAR ECOLOGY RESOURCES, Issue 6 2007JIM PROVAN Abstract The copepod Calanus finmarchicus is the major contributor to zooplankton biomass in the North Atlantic and Norwegian Sea, but recent studies have shown a 70% decrease in abundance as well as a northward shift in the species' range. Insights into dispersal capabilities gained from population genetic studies will be crucial in predicting the response of C. finmarchicus communities to climate change and, consequently, we have developed a set of expressed sequence tag-derived microsatellite markers to allow fine-scale elucidation of population structuring and dispersal. Ten polymorphic markers displayed between two and 19 alleles, with levels of expected heterozygosity ranging from 0.044 to 0.924. [source] Development of polymorphic expressed sequence tag-derived microsatellites for the extension of the genetic linkage map of the black tiger shrimp (Penaeus monodon)ANIMAL GENETICS, Issue 4 2006C. Maneeruttanarungroj Summary In this study, microsatellite markers were developed for the genetic linkage mapping and breeding program of the black tiger shrimp Penaeus monodon. A total of 997 unique microsatellite-containing expressed sequence tags (ESTs) were identified from 10 100 EST sequences in the P. monodon EST database. AT-rich microsatellite types were predominant in the EST sequences. Homology searching by the blastn and blastx programs revealed that these 997 ESTs represented 8.6% known gene products, 27.8% hypothetical proteins and 63.6% unknown gene products. Characterization of 50 markers on a panel of 35,48 unrelated shrimp indicated an average number of alleles of 12.6 and an average polymorphic information content of 0.723. These EST microsatellite markers along with 208 other markers (185 amplified fragment length polymorphisms, one exon-primed intron-crossing, six single strand conformation polymorphisms, one single nucleotide polymorphism, 13 non-EST-associated microsatellites and two EST-associated microsatellites) were analysed across the international P. monodon mapping family. A total of 144 new markers were added to the P. monodon maps, including 36 of the microsatellite-containing ESTs. The current P. monodon male and female linkage maps have 47 and 36 linkage groups respectively with coverage across half the P. monodon genome. [source] Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) genes expressed during infection of cotton (Gossypium hirsutum),MOLECULAR PLANT PATHOLOGY, Issue 2 2006HELEN G. MCFADDEN SUMMARY We sought to identify Fusarium oxysporum f. sp. vasinfectum (Fov) genes that may be associated with pathogenicity. Initially we utilized microarray and Q-PCR technology to identify Fov genes expressed in root and hypocotyl tissues during a compatible infection of cotton. We identified 218 fungal clones representing 174 Fov non-redundant genes as expressed in planta. The majority of the expressed sequences were expressed in infected roots, with only six genes detected in hypocotyl tissue. The Fov genes identified were predominately of unknown function or associated with fungal growth and energy production. We then analysed the expression of the identified fungal genes in infected roots and in saprophytically grown mycelia and identified 11 genes preferentially expressed in plant tissue. A putative oxidoreductase gene (with homology to AtsC) was found to be highly preferentially expressed in planta. In Agrobacterium tumefaciens, AtsC is associated with virulence. Inoculation of a susceptible and a partially resistant cotton cultivar with either a pathogenic or a non-pathogenic isolate of Fov revealed that the expression of the Fov AtsC homologue was associated with pathogenicity and disease symptom formation. [source] Mining expressed sequences for single nucleotide polymorphisms in Pacific abalone Haliotis discus hannaiAQUACULTURE RESEARCH, Issue 14 2009Haigang Qi Abstract Although single nucleotide polymorphisms (SNPs) are important resources for population genetics, pedigree analysis and genomic mapping, such loci have not been reported in Pacific abalone so far. In this study, a bioinformatics strategy was adopted to discover SNPs within the expressed sequences (ESTs) of Pacific abalone, Haliotis discus hannai, and furthermore, polymerase chain reaction direct sequencing (PCR-DS) and allele-specific PCR (AS-PCR) were used for SNPs detection and genotype scoring respectively. A total of 5893 ESTs were assembled and 302 putative SNPs were identified. The average density of SNPs in ESTs was 1%. Fifty-two sets of sequencing primers were designed from SNPs flanking ESTs to amplify the genomic DNA, and 13 could generate products of expected size. Polymerase chain reaction direct sequencing of the amplification products from pooled DNA samples revealed 40 polymorphic SNP loci. Using a modified tetra-primer AS-PCR, seven mitochondrial and six nuclear SNPs were typed and characterized among 37 wild abalones. In conclusion, it is feasible to discover SNPs from number limited ESTs and the AS-PCR as a simple, robust and reliable assay could be a primary method for small- and medium-scale SNPs detection in abalones as well as other non-model organisms. [source] |