Home About us Contact | |||
Exposure Alone (exposure + alone)
Selected AbstractsEnvironmental Risk Factors Predisposing to the Development of Basal Cell CarcinomaDERMATOLOGIC SURGERY, Issue 2004Malgorzata Zak-Prelich MD Background. Basal cell carcinomas (BCCs) are the most common malignancies in white people. The incidence varies depending on the region of the world, with the highest rate of 1% to 2% per year noted in Australia. It is estimated that BCC incidence increases by 5% annually. An increasing incidence of BCC is in line with the changes in the living style and exposure to various environmental factors. Objective. To present the environmental factors that may influence the development of BCCs. The influence of ultraviolet radiation exposure alone and in connection with immunosuppression, smoking, occupational factors, as well as arsenic and ionizing radiation exposure, was described. Conclusion. BCC is a very complex disease, with many factors influencing its development. Environmental factors are very important for the prevalence of BCC, and most of them can be avoided. The exposure to ultraviolet radiation is undoubtedly of great risk; therefore, the national campaigns against aggressive, seasonal sun exposure, especially in children and adolescents, as well as using sunscreens, are of great value in the fight against BCC development. [source] Effects of cevoglitazar, a dual PPAR,/, agonist, on ectopic fat deposition in fatty Zucker ratsDIABETES OBESITY & METABOLISM, Issue 6 2009D. Laurent Aim:, By acting as both insulin sensitizers and lipid-lowering agents, dual-acting peroxisome proliferator-activated receptors ,/, (PPAR,/,) agonists may be used to improve glucose tolerance in type 2 diabetic patients without inducing adiposity and body weight gain. Here, in an animal model of obesity and insulin resistance, the metabolic response to cevoglitazar, a dual PPAR,/,, was characterized using a combination of in vivo and ex vivo magnetic resonance methodologies and compared to treatment effects of fenofibrate, a PPAR, agonist, and pioglitazone, a PPAR, agonist. Methods:, Four groups of fatty Zucker rats: (i) Vehicle; (ii) fenofibrate 150 mg/kg; (iii) pioglitazone 30 mg/kg; and (iv) cevoglitazar 5 mg/kg were investigated before and after treatment. Animals were fed a fat-enriched (54% kcal fat) diet for 6 weeks, 2 weeks high of fat,exposure alone followed by a 4-week dosing period. Results and conclusions:, Cevoglitazar was as effective as pioglitazone at improving glucose tolerance. However, unlike pioglitazone, both fenofibrate and cevoglitazar reduced BW gain and adiposity, independent of food intake. All three treatment regimens normalized intramyocellular lipids. Metabolic profiling showed that in the muscle cevoglitazar improves the lipid profile via both PPAR,- and PPAR,-mediated mechanisms. Pioglitazone reduced hepatic lipid accumulation, while cevoglitazar and fenofibrate reduced hepatic lipid concentration below baseline levels (p < 0.05). Metabolic profiling showed that in the liver, cevoglitazar functions largely through PPAR, agonism resulting in increased ,-oxidation. Cevoglitazar only induced small changes to the lipid composition of visceral fat. In subcutaneous fat, however, cevoglitazar induced changes similar to those observed with fenofibrate suggesting export of fatty acids from this depot. [source] Combined pulmonary toxicity of cadmium chloride and sodium diethyldithiocarbamateJOURNAL OF APPLIED TOXICOLOGY, Issue 2 2001Erzsébet Tátrai Abstract The pulmonary toxicity of sodium diethyldithiocarbamate and cadmium chloride, each separately and in combination, was compared in Sprague-Dawley rats after single intratracheal instillation in sequential experiments by chemical, immunological and morphological methods. With combined exposure, the cadmium content of the lungs increased permanently relative to that of the lungs of just cadmium-treated animals. Immunoglobulin levels of the whole blood did not change, whereas in bronchoalveolar lavage the IgA and IgG levels increased significantly. Morphological changes were characteristic of the effects of cadmium but were more extensive and more serious than in the case of cadmium administration alone: by the end of the first month, interstitial fibrosis, emphysema and injury of membranes of type I pneumocytes developed and hypertrophy and loss of microvilli in type II pneumocytes were detectable. These results showed that although dithiocarbamates as chelating agents are suitable for the removal of cadmium from organisms, they alter the redistribution of cadmium within the organism, thereby increasing the cadmium content in the lungs, and structural changes are more serious than observed upon cadmium exposure alone. Copyright © 2001 John Wiley & Sons, Ltd. [source] Attenuation of TCDD-induced oxidative stress by 670 nm photobiomodulation in developmental chicken kidneyJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 4 2008Jinhwan Lim 2,3,7,8-Tetrachlorodibenzo- p -dioxin (TCDD), a potent developmental teratogen inducing oxidative stress and sublethal changes in multiple organs, provokes developmental renal injuries. In this study, we investigated TCDD-induced biochemical changes and the therapeutic efficacy of photobiomodulation (670 nm; 4 J/cm2) on oxidative stress in chicken kidneys during development. Eggs were injected once prior to incubation with TCDD (2 pg/g or 200 pg/g) or sunflower oil vehicle control. Half of the eggs in each dose group were then treated with red light once per day through embryonic day 20 (E20). Upon hatching at E21, the kidneys were collected and assayed for glutathione peroxidase, glutathione reductase, catalase, superoxide dimutase, and glutathione- S -transferase activities, as well as reduced glutathione and ATP levels, and lipid peroxidation. TCDD exposure alone suppressed the activity of the antioxidant enzymes, increased lipid peroxidation, and depleted available ATP. The biochemical indicators of oxidative and energy stress in the kidney were reversed by daily phototherapy, restoring ATP and glutathione contents and increasing antioxidant enzyme activities to control levels. Photobiomodulation also normalized the level of lipid peroxidation increased by TCDD exposure. The results of this study suggest that 670 nm photobiomodulation may be useful as a noninvasive treatment for renal injury resulting from chemically induced cellular oxidative and energy stress. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:230,239, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20233 [source] The Interaction of Gestational and Postnatal Ethanol Experience on the Adolescent and Adult Odor-Mediated Responses to Ethanol in Observer and Demonstrator RatsALCOHOLISM, Issue 10 2010Amber M. Eade Background:, Gestational ethanol exposure enhances the adolescent reflexive sniffing response to ethanol odor. Postnatal exposures of naďve animals as either an observer (i.e., conspecific) or demonstrator (i.e., intoxicated peer) using a social transmission of food odor preference paradigm also yields enhanced odor-mediated responses. Studies on the interaction of fetal and postnatal exposures using the social transmission paradigm have been limited to the responses of observers. When combined, the enhanced response is greater than either form of exposure alone and, in observer females, yields adult persistence. The absence of a male effect is noteworthy, given that chemosensory mechanisms are suggested to be an important antecedent factor in the progression of ethanol preference. Observers gain odor information on the breath of the demonstrator through social interaction. Demonstrators experience the pharmacologic properties of ethanol along with retronasal and hematogenic olfaction. Thus, we tested whether augmentation of the fetal ethanol-induced behavioral response with postnatal exposure as a demonstrator differed from that as an observer. We also examined whether re-exposure as a demonstrator yields persistence in both sexes. Methods:, Pregnant dams were fed an ethanol containing or control liquid diet throughout gestation. Progeny received four ethanol or water exposures: one every 48 hours through either intragastric infusion or social interaction with the infused peer beginning on P29. The reflexive behavioral sniffing response to ethanol odor was tested at postnatal (P) day 37 or P90, using whole-body plethysmography. Results:, When tested in either adolescence or adulthood - fetal ethanol exposed adolescent ethanol observers and demonstrators significantly differed in their odor-mediated response to ethanol odor both between themselves and from their respective water controls. Nonetheless, adolescent ethanol re-exposure as a demonstrator, like an observer, enhanced the reflexive sniffing response to ethanol odor at both testing ages by augmenting the known effects of prior fetal ethanol experience. At each age, the magnitude of the enhanced odor response in demonstrators was similar to that of observers. Interestingly, only re-exposure as a demonstrator resulted in persistence of the behavioral response into adulthood in both sexes. Conclusions:, The method of ethanol re-exposure plays an important role in prolonging the odor-mediated effects of fetal exposure. While ethanol odor-specific exposure through social interaction is important, additional factors such as the pairing of retronasal and hematogenic olfaction with ethanol's intoxicating properties appear necessary to achieve persistence in both sexes. [source] Acute and Chronic Alcohol Exposure Impair the Phagocytosis of Apoptotic Cells and Enhance the Pulmonary Inflammatory ResponseALCOHOLISM, Issue 10 2010Darren M. Boé Background:, Alcohol abuse increases the risk for acute respiratory distress syndrome (ARDS). Efferocytosis, the clearance of apoptotic cells, is important in the resolution of inflammation and is regulated by RhoA and rho kinase (ROCK) activation. The effects of alcohol on pulmonary Rho pathway activation and efferocytosis have not been determined. We hypothesize that acute and chronic alcohol exposure impair pulmonary efferocytosis, leading to heightened inflammation during ARDS. Methods:, For in vivo experiments, C57BL/6 mice received either a single intraperitoneal injection of alcohol or chronic ethanol-in-water for 8 weeks prior to intratracheal instillation of apoptotic cells or lipopolysaccharide (LPS). Bronchoalveolar lavage (BAL) was performed for cells counts, calculation of the phagocytic index (PI), and Rho activity measurements. For in vitro studies, primary alveolar macrophages were cultured in alcohol (25,100 mM) and then co-cultured with apoptotic cells. RhoA activity was determined following alcohol exposure, and the PI was determined before and after treatment with the ROCK inhibitor, Y27632. Results:, Acute alcohol exposure was associated with impaired efferocytosis. Following LPS exposure, acute alcohol exposure was also associated with increased BAL neutrophils. Chronic alcohol exposure alone did not alter efferocytosis. However, following exposure to LPS, chronic alcohol exposure was associated with both impaired efferocytosis and increased BAL neutrophils. In vitro alcohol exposure caused a dose-dependent decrease in efferocytosis. Despite the fact that RhoA activity was decreased by alcohol exposure and RhoA inhibition did not alter the effects of alcohol on efferocytosis, treatment with the Rho kinase inhibitor, Y27632, reversed the effects of alcohol on efferocytosis. Conclusions:, Acute alcohol exposure impairs pulmonary efferocytosis, whereas exposure to chronic alcohol is only associated with impaired efferocytosis following LPS-induced lung injury. Both forms of alcohol exposure are associated with increased alveolar neutrophil numbers in response to LPS. The acute effects of alcohol on efferocytosis appear to be mediated, at least in part, by RhoA-independent activation of ROCK. Further studies are needed to dissect the differences between the effects of acute and chronic alcohol exposure on efferocytosis and to determine the effects of alcohol on alternative activators of ROCK. [source] Smoke Exposure Exacerbates an Ethanol-Induced Defect in Mucociliary Clearance of Streptococcus pneumoniaeALCOHOLISM, Issue 5 2005Elizabeth A. Vander Top Background: Alcoholics and smokers are particularly susceptible to pulmonary infections caused by Streptococcus pneumoniae, the pneumococcus. Infection begins when pneumococci colonizing the nasopharynx are aspirated into the lower respiratory tract. The major host defense against this movement is the mucociliary clearance apparatus. Both cigarette smoke and ethanol (EtOH) exposure alter ciliary beating and protein kinase activity in the respiratory mucosa in vitro, but their effects on bacterial clearance in the intact animal have not been determined. Methods: Male Sprague Dawley rats were exposed twice daily for 12 weeks to either the smoke generated from 30 cigarettes (smoke,exposed) or room air (sham,exposed). For the last five weeks of smoke exposure, the rats were fed Lieber-DeCarli liquid diets containing 0%, 16%, 26%, or 36% EtOH calories. The rats then were infected intranasally with S. pneumoniae, and movement of the organisms into the lower respiratory tract was quantified by plate counts of the tracheas and lungs 4 hr later. Ciliary beat frequency (CBF) analysis was performed on tracheal ring explants from each animal before and after stimulation with the ,-agonist isoproterenol, and tracheal epithelial cell protein kinase C (PKC) activity was measured. Results: Ingestion of any of the EtOH-containing diets resulted in a dose-dependent increase in movement of S. pneumoniae into the rats' lungs. This EtOH-induced defect was augmented further by concurrent smoke exposure, although smoke exposure alone had little effect on S. pneumoniae movement. Smoke, but not EtOH exposure, activated tracheal epithelial cell PKC. Increased movement of organisms into lungs correlated with a decrease in CBF and loss of the ciliary response to isoproterenol. Conclusion: EtOH ingestion in our model facilitated movement of S. pneumoniae into rats' lungs, a phenomenon exacerbated by concurrent smoke exposure. Furthermore, the organism's movement into the lungs correlated with a blunting of the rats' ciliary response to an established stimulus. Defects in mucociliary clearance thus may be one cause of the increased risk of pneumococcal infections in people who abuse alcohol, particularly if they also smoke. [source] Increased US prescription trends associated with the CDC Bacillus anthracis antimicrobial postexposure prophylaxis campaign,,PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, Issue 3 2003Douglas Shaffer MD Abstract Purpose We evaluated national outpatient antimicrobial prescription trends in relation to the first United States case of inhalational anthrax due to the intentional delivery of Bacillus anthracis (B. anthracis) spores. Methods We queried IMS HEALTH's National Prescription Audit Plus7Ô database for two 6-month periods (July,December) in 2001 and 2000 to describe outpatient prescription trends of antimicrobials recommended during the Centers for Disease Control and Prevention's (CDC) postexposure prophylaxis campaign. Results Overall, antimicrobial utilization for the referent 6-month time frame was greater in 2000 compared to 2001. In contrast, ciprofloxacin utilization was greater in 2001 during October, the month following the index case, increasing by more than 40% over utilization in October 2000. Similarly, doxycycline utilization increased by 30% during October/November. This corresponded to relative increases in US utilization for ciprofloxacin of approximately 160,000 prescriptions for the month of October and for doxycycline of approximately 96,000 prescriptions during October and 120,000 prescriptions for November. Conclusions We conclude more widespread prescribing of ciprofloxacin and doxycycline occurred in response to the first US bioterrorist-associated anthrax attacks than was warranted based upon confirmed or suspected B. anthracis exposure alone. Published in 2003 by John Wiley & Sons, Ltd. [source] Detection and Prevention of Ocular Phototoxicity of Ciprofloxacin and Other Fluoroquinolone Antibiotics,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2010Baozhong Zhao Fluoroquinolone (FLQ) drugs are a potent family of antibiotics used to treat infections including ocular infections. To determine if these antibiotics may be phototoxic to the eye, we exposed human lens epithelial cells to 0.125,1 mm FLQs (ciprofloxacin [Cipro], lomefloxacin [Lome], norfloxacin [Nor] and ofloxacin [Ofl]), the precursor quinolone nalidixic acid (Nalid) and UVA radiation (2.5 J cm,2). Based on fluorescence confocal microscopy, FLQs are diffused throughout the cytoplasm and preferentially located in the lysosomes of lens epithelial cells. Neither FLQ exposure alone nor UVA exposure alone reduced cell viability. However, with exposure to UVA radiation the FLQs studied (Cipro, Nor, Lome and Ofl) induced a phototoxic reaction that included necrosis, apoptosis, loss of cell viability as measured by MTS, and membrane damage as determined by the lactate dehydrogenase assay. Both Nalid and all FLQs studied (Cipro, Nor, Lome and Ofl) photopolymerized the lens protein ,-crystallin. Phototoxic damage to lens epithelial cells and/or ,-crystallin will lead to a loss of transparency of the human lens. However, if precautions are taken to filter all UV radiation from the eye while taking these antibiotics, eye damage may be prevented. [source] Phototoxicity in Human Retinal Pigment Epithelial Cells Promoted by Hypericin, a Component of St. John's Wort,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2007Albert R. Wielgus ABSTRACT St. John's wort (SJW), an over-the-counter antidepressant, contains hypericin, which absorbs light in the UV and visible ranges. In vivo studies have determined that hypericin is phototoxic to skin and our previous in vitro studies with lens tissues have determined that it is potentially phototoxic to the human lens. To determine if hypericin might also be phototoxic to the human retina, we exposed human retinal pigment epithelial (hRPE) cells to 10,7 to 10,5 M hypericin. Fluorescence emission detected from the cells (,ex = 488 nm; ,em = 505 nm) confirmed hypericin uptake by human RPE. Neither hypericin exposure alone nor visible light exposure alone reduced cell viability. However when irradiated with 0.7 J cm,2 of visible light (, > 400 nm) there was loss of cell viability as measured by MTS and lactate dehydrogenase assays. The presence of hypericin in irradiated hRPE cells significantly changed the redox equilibrium of glutathione and a decrease in the activity of glutathione reductase. Increased lipid peroxidation as measured by the thiobarbituric acid reactive substances assay correlated to hypericin concentration in hRPE cells and visible light radiation. Thus, ingested SJW is potentially phototoxic to the retina and could contribute to retinal or early macular degeneration. [source] European Mathematical Genetics Meeting, Heidelberg, Germany, 12th,13th April 2007ANNALS OF HUMAN GENETICS, Issue 4 2007Article first published online: 28 MAY 200 Saurabh Ghosh 11 Indian Statistical Institute, Kolkata, India High correlations between two quantitative traits may be either due to common genetic factors or common environmental factors or a combination of both. In this study, we develop statistical methods to extract the contribution of a common QTL to the total correlation between the components of a bivariate phenotype. Using data on bivariate phenotypes and marker genotypes for sib-pairs, we propose a test for linkage between a common QTL and a marker locus based on the conditional cross-sib trait correlations (trait 1 of sib 1 , trait 2 of sib 2 and conversely) given the identity-by-descent sharing at the marker locus. The null hypothesis cannot be rejected unless there exists a common QTL. We use Monte-Carlo simulations to evaluate the performance of the proposed test under different trait parameters and quantitative trait distributions. An application of the method is illustrated using data on two alcohol-related phenotypes from the Collaborative Study On The Genetics Of Alcoholism project. Rémi Kazma 1 , Catherine Bonaďti-Pellié 1 , Emmanuelle Génin 12 INSERM UMR-S535 and Université Paris Sud, Villejuif, 94817, France Keywords: Gene-environment interaction, sibling recurrence risk, exposure correlation Gene-environment interactions may play important roles in complex disease susceptibility but their detection is often difficult. Here we show how gene-environment interactions can be detected by investigating the degree of familial aggregation according to the exposure of the probands. In case of gene-environment interaction, the distribution of genotypes of affected individuals, and consequently the risk in relatives, depends on their exposure. We developed a test comparing the risks in sibs according to the proband exposure. To evaluate the properties of this new test, we derived the formulas for calculating the expected risks in sibs according to the exposure of probands for various values of exposure frequency, relative risk due to exposure alone, frequencies of latent susceptibility genotypes, genetic relative risks and interaction coefficients. We find that the ratio of risks when the proband is exposed and not exposed is a good indicator of the interaction effect. We evaluate the power of the test for various sample sizes of affected individuals. We conclude that this test is valuable for diseases with moderate familial aggregation, only when the role of the exposure has been clearly evidenced. Since a correlation for exposure among sibs might lead to a difference in risks among sibs in the different proband exposure strata, we also add an exposure correlation coefficient in the model. Interestingly, we find that when this correlation is correctly accounted for, the power of the test is not decreased and might even be significantly increased. Andrea Callegaro 1 , Hans J.C. Van Houwelingen 1 , Jeanine Houwing-Duistermaat 13 Dept. of Medical Statistics and Bioinformatics, Leiden University Medical Center, The Netherlands Keywords: Survival analysis, age at onset, score test, linkage analysis Non parametric linkage (NPL) analysis compares the identical by descent (IBD) sharing in sibling pairs to the expected IBD sharing under the hypothesis of no linkage. Often information is available on the marginal cumulative hazards (for example breast cancer incidence curves). Our aim is to extend the NPL methods by taking into account the age at onset of selected sibling pairs using these known marginal hazards. Li and Zhong (2002) proposed a (retrospective) likelihood ratio test based on an additive frailty model for genetic linkage analysis. From their model we derive a score statistic for selected samples which turns out to be a weighed NPL method. The weights depend on the marginal cumulative hazards and on the frailty parameter. A second approach is based on a simple gamma shared frailty model. Here, we simply test whether the score function of the frailty parameter depends on the excess IBD. We compare the performance of these methods using simulated data. Céline Bellenguez 1 , Carole Ober 2 , Catherine Bourgain 14 INSERM U535 and University Paris Sud, Villejuif, France 5 Department of Human Genetics, The University of Chicago, USA Keywords: Linkage analysis, linkage disequilibrium, high density SNP data Compared with microsatellite markers, high density SNP maps should be more informative for linkage analyses. However, because they are much closer, SNPs present important linkage disequilibrium (LD), which biases classical nonparametric multipoint analyses. This problem is even stronger in population isolates where LD extends over larger regions with a more stochastic pattern. We investigate the issue of linkage analysis with a 500K SNP map in a large and inbred 1840-member Hutterite pedigree, phenotyped for asthma. Using an efficient pedigree breaking strategy, we first identified linked regions with a 5cM microsatellite map, on which we focused to evaluate the SNP map. The only method that models LD in the NPL analysis is limited in both the pedigree size and the number of markers (Abecasis and Wigginton, 2005) and therefore could not be used. Instead, we studied methods that identify sets of SNPs with maximum linkage information content in our pedigree and no LD-driven bias. Both algorithms that directly remove pairs of SNPs in high LD and clustering methods were evaluated. Null simulations were performed to control that Zlr calculated with the SNP sets were not falsely inflated. Preliminary results suggest that although LD is strong in such populations, linkage information content slightly better than that of microsatellite maps can be extracted from dense SNP maps, provided that a careful marker selection is conducted. In particular, we show that the specific LD pattern requires considering LD between a wide range of marker pairs rather than only in predefined blocks. Peter Van Loo 1,2,3 , Stein Aerts 1,2 , Diether Lambrechts 4,5 , Bernard Thienpont 2 , Sunit Maity 4,5 , Bert Coessens 3 , Frederik De Smet 4,5 , Leon-Charles Tranchevent 3 , Bart De Moor 2 , Koen Devriendt 3 , Peter Marynen 1,2 , Bassem Hassan 1,2 , Peter Carmeliet 4,5 , Yves Moreau 36 Department of Molecular and Developmental Genetics, VIB, Belgium 7 Department of Human Genetics, University of Leuven, Belgium 8 Bioinformatics group, Department of Electrical Engineering, University of Leuven, Belgium 9 Department of Transgene Technology and Gene Therapy, VIB, Belgium 10 Center for Transgene Technology and Gene Therapy, University of Leuven, Belgium Keywords: Bioinformatics, gene prioritization, data fusion The identification of genes involved in health and disease remains a formidable challenge. Here, we describe a novel bioinformatics method to prioritize candidate genes underlying pathways or diseases, based on their similarity to genes known to be involved in these processes. It is freely accessible as an interactive software tool, ENDEAVOUR, at http://www.esat.kuleuven.be/endeavour. Unlike previous methods, ENDEAVOUR generates distinct prioritizations from multiple heterogeneous data sources, which are then integrated, or fused, into one global ranking using order statistics. ENDEAVOUR prioritizes candidate genes in a three-step process. First, information about a disease or pathway is gathered from a set of known "training" genes by consulting multiple data sources. Next, the candidate genes are ranked based on similarity with the training properties obtained in the first step, resulting in one prioritized list for each data source. Finally, ENDEAVOUR fuses each of these rankings into a single global ranking, providing an overall prioritization of the candidate genes. Validation of ENDEAVOUR revealed it was able to efficiently prioritize 627 genes in disease data sets and 76 genes in biological pathway sets, identify candidates of 16 mono- or polygenic diseases, and discover regulatory genes of myeloid differentiation. Furthermore, the approach identified YPEL1 as a novel gene involved in craniofacial development from a 2-Mb chromosomal region, deleted in some patients with DiGeorge-like birth defects. Finally, we are currently evaluating a pipeline combining array-CGH, ENDEAVOUR and in vivo validation in zebrafish to identify novel genes involved in congenital heart defects. Mark Broom 1 , Graeme Ruxton 2 , Rebecca Kilner 311 Mathematics Dept., University of Sussex, UK 12 Division of Environmental and Evolutionary Biology, University of Glasgow, UK 13 Department of Zoology, University of Cambridge, UK Keywords: Evolutionarily stable strategy, parasitism, asymmetric game Brood parasites chicks vary in the harm that they do to their companions in the nest. In this presentation we use game-theoretic methods to model this variation. Our model considers hosts which potentially abandon single nestlings and instead choose to re-allocate their reproductive effort to future breeding, irrespective of whether the abandoned chick is the host's young or a brood parasite's. The parasite chick must decide whether or not to kill host young by balancing the benefits from reduced competition in the nest against the risk of desertion by host parents. The model predicts that three different types of evolutionarily stable strategies can exist. (1) Hosts routinely rear depleted broods, the brood parasite always kills host young and the host never then abandons the nest. (2) When adult survival after deserting single offspring is very high, hosts always abandon broods of a single nestling and the parasite never kills host offspring, effectively holding them as hostages to prevent nest desertion. (3) Intermediate strategies, in which parasites sometimes kill their nest-mates and host parents sometimes desert nests that contain only a single chick, can also be evolutionarily stable. We provide quantitative descriptions of how the values given to ecological and behavioral parameters of the host-parasite system influence the likelihood of each strategy and compare our results with real host-brood parasite associations in nature. Martin Harrison 114 Mathematics Dept, University of Sussex, UK Keywords: Brood parasitism, games, host, parasite The interaction between hosts and parasites in bird populations has been studied extensively. Game theoretical methods have been used to model this interaction previously, but this has not been studied extensively taking into account the sequential nature of this game. We consider a model allowing the host and parasite to make a number of decisions, which depend on a number of natural factors. The host lays an egg, a parasite bird will arrive at the nest with a certain probability and then chooses to destroy a number of the host eggs and lay one of it's own. With some destruction occurring, either natural or through the actions of the parasite, the host chooses to continue, eject an egg (hoping to eject the parasite) or abandon the nest. Once the eggs have hatched the game then falls to the parasite chick versus the host. The chick chooses to destroy or eject a number of eggs. The final decision is made by the host, choosing whether to raise or abandon the chicks that are in the nest. We consider various natural parameters and probabilities which influence these decisions. We then use this model to look at real-world situations of the interactions of the Reed Warbler and two different parasites, the Common Cuckoo and the Brown-Headed Cowbird. These two parasites have different methods in the way that they parasitize the nests of their hosts. The hosts in turn have a different reaction to these parasites. Arne Jochens 1 , Amke Caliebe 2 , Uwe Roesler 1 , Michael Krawczak 215 Mathematical Seminar, University of Kiel, Germany 16 Institute of Medical Informatics and Statistics, University of Kiel, Germany Keywords: Stepwise mutation model, microsatellite, recursion equation, temporal behaviour We consider the stepwise mutation model which occurs, e.g., in microsatellite loci. Let X(t,i) denote the allelic state of individual i at time t. We compute expectation, variance and covariance of X(t,i), i=1,,,N, and provide a recursion equation for P(X(t,i)=z). Because the variance of X(t,i) goes to infinity as t grows, for the description of the temporal behaviour, we regard the scaled process X(t,i)-X(t,1). The results furnish a better understanding of the behaviour of the stepwise mutation model and may in future be used to derive tests for neutrality under this model. Paul O'Reilly 1 , Ewan Birney 2 , David Balding 117 Statistical Genetics, Department of Epidemiology and Public Health, Imperial, College London, UK 18 European Bioinformatics Institute, EMBL, Cambridge, UK Keywords: Positive selection, Recombination rate, LD, Genome-wide, Natural Selection In recent years efforts to develop population genetics methods that estimate rates of recombination and levels of natural selection in the human genome have intensified. However, since the two processes have an intimately related impact on genetic variation their inference is vulnerable to confounding. Genomic regions subject to recent selection are likely to have a relatively recent common ancestor and consequently less opportunity for historical recombinations that are detectable in contemporary populations. Here we show that selection can reduce the population-based recombination rate estimate substantially. In genome-wide studies for detecting selection we observe a tendency to highlight loci that are subject to low levels of recombination. We find that the outlier approach commonly adopted in such studies may have low power unless variable recombination is accounted for. We introduce a new genome-wide method for detecting selection that exploits the sensitivity to recent selection of methods for estimating recombination rates, while accounting for variable recombination using pedigree data. Through simulations we demonstrate the high power of the Ped/Pop approach to discriminate between neutral and adaptive evolution, particularly in the context of choosing outliers from a genome-wide distribution. Although methods have been developed showing good power to detect selection ,in action', the corresponding window of opportunity is small. In contrast, the power of the Ped/Pop method is maintained for many generations after the fixation of an advantageous variant Sarah Griffiths 1 , Frank Dudbridge 120 MRC Biostatistics Unit, Cambridge, UK Keywords: Genetic association, multimarker tag, haplotype, likelihood analysis In association studies it is generally too expensive to genotype all variants in all subjects. We can exploit linkage disequilibrium between SNPs to select a subset that captures the variation in a training data set obtained either through direct resequencing or a public resource such as the HapMap. These ,tag SNPs' are then genotyped in the whole sample. Multimarker tagging is a more aggressive adaptation of pairwise tagging that allows for combinations of two or more tag SNPs to predict an untyped SNP. Here we describe a new method for directly testing the association of an untyped SNP using a multimarker tag. Previously, other investigators have suggested testing a specific tag haplotype, or performing a weighted analysis using weights derived from the training data. However these approaches do not properly account for the imperfect correlation between the tag haplotype and the untyped SNP. Here we describe a straightforward approach to testing untyped SNPs using a missing-data likelihood analysis, including the tag markers as nuisance parameters. The training data is stacked on top of the main body of genotype data so there is information on how the tag markers predict the genotype of the untyped SNP. The uncertainty in this prediction is automatically taken into account in the likelihood analysis. This approach yields more power and also a more accurate prediction of the odds ratio of the untyped SNP. Anke Schulz 1 , Christine Fischer 2 , Jenny Chang-Claude 1 , Lars Beckmann 121 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany 22 Institute of Human Genetics, University of Heidelberg, Germany Keywords: Haplotype, haplotype sharing, entropy, Mantel statistics, marker selection We previously introduced a new method to map genes involved in complex diseases, using haplotype sharing-based Mantel statistics to correlate genetic and phenotypic similarity. Although the Mantel statistic is powerful in narrowing down candidate regions, the precise localization of a gene is hampered in genomic regions where linkage disequilibrium is so high that neighboring markers are found to be significant at similar magnitude and we are not able to discriminate between them. Here, we present a new approach to localize susceptibility genes by combining haplotype sharing-based Mantel statistics with an iterative entropy-based marker selection algorithm. For each marker at which the Mantel statistic is evaluated, the algorithm selects a subset of surrounding markers. The subset is chosen to maximize multilocus linkage disequilibrium, which is measured by the normalized entropy difference introduced by Nothnagel et al. (2002). We evaluated the algorithm with respect to type I error and power. Its ability to localize the disease variant was compared to the localization (i) without marker selection and (ii) considering haplotype block structure. Case-control samples were simulated from a set of 18 haplotypes, consisting of 15 SNPs in two haplotype blocks. The new algorithm gave correct type I error and yielded similar power to detect the disease locus compared to the alternative approaches. The neighboring markers were clearly less often significant than the causal locus, and also less often significant compared to the alternative approaches. Thus the new algorithm improved the precision of the localization of susceptibility genes. Mark M. Iles 123 Section of Epidemiology and Biostatistics, LIMM, University of Leeds, UK Keywords: tSNP, tagging, association, HapMap Tagging SNPs (tSNPs) are commonly used to capture genetic diversity cost-effectively. However, it is important that the efficacy of tSNPs is correctly estimated, otherwise coverage may be insufficient. If the pilot sample from which tSNPs are chosen is too small or the initial marker map too sparse, tSNP efficacy may be overestimated. An existing estimation method based on bootstrapping goes some way to correct for insufficient sample size and overfitting, but does not completely solve the problem. We describe a novel method, based on exclusion of haplotypes, that improves on the bootstrap approach. Using simulated data, the extent of the sample size problem is investigated and the performance of the bootstrap and the novel method are compared. We incorporate an existing method adjusting for marker density by ,SNP-dropping'. We find that insufficient sample size can cause large overestimates in tSNP efficacy, even with as many as 100 individuals, and the problem worsens as the region studied increases in size. Both the bootstrap and novel method correct much of this overestimate, with our novel method consistently outperforming the bootstrap method. We conclude that a combination of insufficient sample size and overfitting may lead to overestimation of tSNP efficacy and underpowering of studies based on tSNPs. Our novel approach corrects for much of this bias and is superior to the previous method. Sample sizes larger than previously suggested may still be required for accurate estimation of tSNP efficacy. This has obvious ramifications for the selection of tSNPs from HapMap data. Claudio Verzilli 1 , Juliet Chapman 1 , Aroon Hingorani 2 , Juan Pablo-Casas 1 , Tina Shah 2 , Liam Smeeth 1 , John Whittaker 124 Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, UK 25 Division of Medicine, University College London, UK Keywords: Meta-analysis, Genetic association studies We present a Bayesian hierarchical model for the meta-analysis of candidate gene studies with a continuous outcome. Such studies often report results from association tests for different, possibly study-specific and non-overlapping markers (typically SNPs) in the same genetic region. Meta analyses of the results at each marker in isolation are seldom appropriate as they ignore the correlation that may exist between markers due to linkage disequlibrium (LD) and cannot assess the relative importance of variants at each marker. Also such marker-wise meta analyses are restricted to only those studies that have typed the marker in question, with a potential loss of power. A better strategy is one which incorporates information about the LD between markers so that any combined estimate of the effect of each variant is corrected for the effect of other variants, as in multiple regression. Here we develop a Bayesian hierarchical linear regression that models the observed genotype group means and uses pairwise LD measurements between markers as prior information to make posterior inference on adjusted effects. The approach is applied to the meta analysis of 24 studies assessing the effect of 7 variants in the C-reactive protein (CRP) gene region on plasma CRP levels, an inflammatory biomarker shown in observational studies to be positively associated with cardiovascular disease. Cathryn M. Lewis 1 , Christopher G. Mathew 1 , Theresa M. Marteau 226 Dept. of Medical and Molecular Genetics, King's College London, UK 27 Department of Psychology, King's College London, UK Keywords: Risk, genetics, CARD15, smoking, model Recently progress has been made in identifying mutations that confer susceptibility to complex diseases, with the potential to use these mutations in determining disease risk. We developed methods to estimate disease risk based on genotype relative risks (for a gene G), exposure to an environmental factor (E), and family history (with recurrence risk ,R for a relative of type R). ,R must be partitioned into the risk due to G (which is modelled independently) and the residual risk. The risk model was then applied to Crohn's disease (CD), a severe gastrointestinal disease for which smoking increases disease risk approximately 2-fold, and mutations in CARD15 confer increased risks of 2.25 (for carriers of a single mutation) and 9.3 (for carriers of two mutations). CARD15 accounts for only a small proportion of the genetic component of CD, with a gene-specific ,S, CARD15 of 1.16, from a total sibling relative risk of ,S= 27. CD risks were estimated for high-risk individuals who are siblings of a CD case, and who also smoke. The CD risk to such individuals who carry two CARD15 mutations is approximately 0.34, and for those carrying a single CARD15 mutation the risk is 0.08, compared to a population prevalence of approximately 0.001. These results imply that complex disease genes may be valuable in estimating with greater precision than has hitherto been possible disease risks in specific, easily identified subgroups of the population with a view to prevention. Yurii Aulchenko 128 Department of Epidemiology & Biostatistics, Erasmus Medical Centre Rotterdam, The Netherlands Keywords: Compression, information, bzip2, genome-wide SNP data, statistical genetics With advances in molecular technology, studies accessing millions of genetic polymorphisms in thousands of study subjects will soon become common. Such studies generate large amounts of data, whose effective storage and management is a challenge to the modern statistical genetics. Standard file compression utilities, such as Zip, Gzip and Bzip2, may be helpful to minimise the storage requirements. Less obvious is the fact that the data compression techniques may be also used in the analysis of genetic data. It is known that the efficiency of a particular compression algorithm depends on the probability structure of the data. In this work, we compared different standard and customised tools using the data from human HapMap project. Secondly, we investigate the potential uses of data compression techniques for the analysis of linkage, association and linkage disequilibrium Suzanne Leal 1 , Bingshan Li 129 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA Keywords: Consanguineous pedigrees, missing genotype data Missing genotype data can increase false-positive evidence for linkage when either parametric or nonparametric analysis is carried out ignoring intermarker linkage disequilibrium (LD). Previously it was demonstrated by Huang et al (2005) that no bias occurs in this situation for affected sib-pairs with unrelated parents when either both parents are genotyped or genotype data is available for two additional unaffected siblings when parental genotypes are missing. However, this is not the case for consanguineous pedigrees, where missing genotype data for any pedigree member within a consanguinity loop can increase false-positive evidence of linkage. The false-positive evidence for linkage is further increased when cryptic consanguinity is present. The amount of false-positive evidence for linkage is highly dependent on which family members are genotyped. When parental genotype data is available, the false-positive evidence for linkage is usually not as strong as when parental genotype data is unavailable. Which family members will aid in the reduction of false-positive evidence of linkage is highly dependent on which other family members are genotyped. For a pedigree with an affected proband whose first-cousin parents have been genotyped, further reduction in the false-positive evidence of linkage can be obtained by including genotype data from additional affected siblings of the proband or genotype data from the proband's sibling-grandparents. When parental genotypes are not available, false-positive evidence for linkage can be reduced by including in the analysis genotype data from either unaffected siblings of the proband or the proband's married-in-grandparents. Najaf Amin 1 , Yurii Aulchenko 130 Department of Epidemiology & Biostatistics, Erasmus Medical Centre Rotterdam, The Netherlands Keywords: Genomic Control, pedigree structure, quantitative traits The Genomic Control (GC) method was originally developed to control for population stratification and cryptic relatedness in association studies. This method assumes that the effect of population substructure on the test statistics is essentially constant across the genome, and therefore unassociated markers can be used to estimate the effect of confounding onto the test statistic. The properties of GC method were extensively investigated for different stratification scenarios, and compared to alternative methods, such as the transmission-disequilibrium test. The potential of this method to correct not for occasional cryptic relations, but for regular pedigree structure, however, was not investigated before. In this work we investigate the potential of the GC method for pedigree-based association analysis of quantitative traits. The power and type one error of the method was compared to standard methods, such as the measured genotype (MG) approach and quantitative trait transmission-disequilibrium test. In human pedigrees, with trait heritability varying from 30 to 80%, the power of MG and GC approach was always higher than that of TDT. GC had correct type 1 error and its power was close to that of MG under moderate heritability (30%), but decreased with higher heritability. William Astle 1 , Chris Holmes 2 , David Balding 131 Department of Epidemiology and Public Health, Imperial College London, UK 32 Department of Statistics, University of Oxford, UK Keywords: Population structure, association studies, genetic epidemiology, statistical genetics In the analysis of population association studies, Genomic Control (Devlin & Roeder, 1999) (GC) adjusts the Armitage test statistic to correct the type I error for the effects of population substructure, but its power is often sub-optimal. Turbo Genomic Control (TGC) generalises GC to incorporate co-variation of relatedness and phenotype, retaining control over type I error while improving power. TGC is similar to the method of Yu et al. (2006), but we extend it to binary (case-control) in addition to quantitative phenotypes, we implement improved estimation of relatedness coefficients, and we derive an explicit statistic that generalizes the Armitage test statistic and is fast to compute. TGC also has similarities to EIGENSTRAT (Price et al., 2006) which is a new method based on principle components analysis. The problems of population structure(Clayton et al., 2005) and cryptic relatedness (Voight & Pritchard, 2005) are essentially the same: if patterns of shared ancestry differ between cases and controls, whether distant (coancestry) or recent (cryptic relatedness), false positives can arise and power can be diminished. With large numbers of widely-spaced genetic markers, coancestry can now be measured accurately for each pair of individuals via patterns of allele-sharing. Instead of modelling subpopulations, we work instead with a coancestry coefficient for each pair of individuals in the study. We explain the relationships between TGC, GC and EIGENSTRAT. We present simulation studies and real data analyses to illustrate the power advantage of TGC in a range of scenarios incorporating both substructure and cryptic relatedness. References Clayton, D. G.et al. (2005) Population structure, differential bias and genomic control in a large-scale case-control association study. Nature Genetics37(11) November 2005. Devlin, B. & Roeder, K. (1999) Genomic control for association studies. Biometics55(4) December 1999. Price, A. L.et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics38(8) (August 2006). Voight, B. J. & Pritchard, J. K. (2005) Confounding from cryptic relatedness in case-control association studies. Public Library of Science Genetics1(3) September 2005. Yu, J.et al. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics38(2) February 2006. Hervé Perdry 1 , Marie-Claude Babron 1 , Françoise Clerget-Darpoux 133 INSERM U535 and Univ. Paris Sud, UMR-S 535, Villejuif, France Keywords: Modifier genes, case-parents trios, ordered transmission disequilibrium test A modifying locus is a polymorphic locus, distinct from the disease locus, which leads to differences in the disease phenotype, either by modifying the penetrance of the disease allele, or by modifying the expression of the disease. The effect of such a locus is a clinical heterogeneity that can be reflected by the values of an appropriate covariate, such as the age of onset, or the severity of the disease. We designed the Ordered Transmission Disequilibrium Test (OTDT) to test for a relation between the clinical heterogeneity, expressed by the covariate, and marker genotypes of a candidate gene. The method applies to trio families with one affected child and his parents. Each family member is genotyped at a bi-allelic marker M of a candidate gene. To each of the families is associated a covariate value; the families are ordered on the values of this covariate. As the TDT (Spielman et al. 1993), the OTDT is based on the observation of the transmission rate T of a given allele at M. The OTDT aims to find a critical value of the covariate which separates the sample of families in two subsamples in which the transmission rates are significantly different. We investigate the power of the method by simulations under various genetic models and covariate distributions. Acknowledgments H Perdry is funded by ARSEP. Pascal Croiseau 1 , Heather Cordell 2 , Emmanuelle Génin 134 INSERM U535 and University Paris Sud, UMR-S535, Villejuif, France 35 Institute of Human Genetics, Newcastle University, UK Keywords: Association, missing data, conditionnal logistic regression Missing data is an important problem in association studies. Several methods used to test for association need that individuals be genotyped at the full set of markers. Individuals with missing data need to be excluded from the analysis. This could involve an important decrease in sample size and a loss of information. If the disease susceptibility locus (DSL) is poorly typed, it is also possible that a marker in linkage disequilibrium gives a stronger association signal than the DSL. One may then falsely conclude that the marker is more likely to be the DSL. We recently developed a Multiple Imputation method to infer missing data on case-parent trios Starting from the observed data, a few number of complete data sets are generated by Markov-Chain Monte Carlo approach. These complete datasets are analysed using standard statistical package and the results are combined as described in Little & Rubin (2002). Here we report the results of simulations performed to examine, for different patterns of missing data, how often the true DSL gives the highest association score among different loci in LD. We found that multiple imputation usually correctly detect the DSL site even if the percentage of missing data is high. This is not the case for the naďve approach that consists in discarding trios with missing data. In conclusion, Multiple imputation presents the advantage of being easy to use and flexible and is therefore a promising tool in the search for DSL involved in complex diseases. Salma Kotti 1 , Heike Bickeböller 2 , Françoise Clerget-Darpoux 136 University Paris Sud, UMR-S535, Villejuif, France 37 Department of Genetic Epidemiology, Medical School, University of Göttingen, Germany Keywords: Genotype relative risk, internal controls, Family based analyses Family based analyses using internal controls are very popular both for detecting the effect of a genetic factor and for estimating the relative disease risk on the corresponding genotypes. Two different procedures are often applied to reconstitute internal controls. The first one considers one pseudocontrol genotype formed by the parental non-transmitted alleles called also 1:1 matching of alleles, while the second corresponds to three pseudocontrols corresponding to all genotypes formed by the parental alleles except the one of the case (1:3 matching). Many studies have compared between the two procedures in terms of the power and have concluded that the difference depends on the underlying genetic model and the allele frequencies. However, the estimation of the Genotype Relative Risk (GRR) under the two procedures has not been studied. Based on the fact that on the 1:1 matching, the control group is composed of the alleles untransmitted to the affected child and on the 1:3 matching, the control group is composed amongst alleles already transmitted to the affected child, we expect a difference on the GRR estimation. In fact, we suspect that the second procedure leads to biased estimation of the GRRs. We will analytically derive the GRR estimators for the 1:1 and 1:3 matching and will present the results at the meeting. Family based analyses using internal controls are very popular both for detecting the effect of a genetic factor and for estimating the relative disease risk on the corresponding genotypes. Two different procedures are often applied to reconstitute internal controls. The first one considers one pseudocontrol genotype formed by the parental non-transmitted alleles called also 1:1 matching of alleles, while the second corresponds to three pseudocontrols corresponding to all genotypes formed by the parental alleles except the one of the case (1:3 matching). Many studies have compared between the two procedures in terms of the power and have concluded that the difference depends on the underlying genetic model and the allele frequencies. However, the estimation of the Genotype Relative Risk (GRR) under the two procedures has not been studied. Based on the fact that on the 1:1 matching, the control group is composed of the alleles untransmitted to the affected child and on the 1:3 matching, the control group is composed amongst alleles already transmitted to the affected child, we expect a difference on the GRR estimation. In fact, we suspect that the second procedure leads to biased estimation of the GRR. We will analytically derive the GRR estimator for the 1:1 and 1:3 matching and will present the results at the meeting. Luigi Palla 1 , David Siegmund 239 Department of Mathematics,Free University Amsterdam, The Netherlands 40 Department of Statistics, Stanford University, California, USA Keywords: TDT, assortative mating, inbreeding, statistical power A substantial amount of Assortative Mating (AM) is often recorded on physical and psychological, dichotomous as well as quantitative traits that are supposed to have a multifactorial genetic component. In particular AM has the effect of increasing the genetic variance, even more than inbreeding because it acts across loci beside within loci, when the trait has a multifactorial origin. Under the assumption of a polygenic model for AM dating back to Wright (1921) and refined by Crow and Felsenstein (1968,1982), the effect of assortative mating on the power to detect genetic association in the Transmission Disequilibrium Test (TDT) is explored as parameters, such as the effective number of genes and the allelic frequency vary. The power is reflected by the non centrality parameter of the TDT and is expressed as a function of the number of trios, the relative risk of the heterozygous genotype and the allele frequency (Siegmund and Yakir, 2007). The noncentrality parameter of the relevant score statistic is updated considering the effect of AM which is expressed in terms of an ,effective' inbreeding coefficient. In particular, for dichotomous traits it is apparent that the higher the number of genes involved in the trait, the lower the loss in power due to AM. Finally an attempt is made to extend this relation to the Q-TDT (Rabinowitz, 1997), which involves considering the effect of AM also on the phenotypic variance of the trait of interest, under the assumption that AM affects only its additive genetic component. References Crow, & Felsenstein, (1968). The effect of assortative mating on the genetic composition of a population. Eugen.Quart.15, 87,97. Rabinowitz,, 1997. A Transmission Disequilibrium Test for Quantitative Trait Loci. Human Heredity47, 342,350. Siegmund, & Yakir, (2007) Statistics of gene mapping, Springer. Wright, (1921). System of mating.III. Assortative mating based on somatic resemblance. Genetics6, 144,161. Jérémie Nsengimana 1 , Ben D Brown 2 , Alistair S Hall 2 , Jenny H Barrett 141 Leeds Institute of Molecular Medicine, University of Leeds, UK 42 Leeds Institute for Genetics, Health and Therapeutics, University of Leeds, UK Keywords: Inflammatory genes, haplotype, coronary artery disease Genetic Risk of Acute Coronary Events (GRACE) is an initiative to collect cases of coronary artery disease (CAD) and their unaffected siblings in the UK and to use them to map genetic variants increasing disease risk. The aim of the present study was to test the association between CAD and 51 single nucleotide polymorphisms (SNPs) and their haplotypes from 35 inflammatory genes. Genotype data were available for 1154 persons affected before age 66 (including 48% before age 50) and their 1545 unaffected siblings (891 discordant families). Each SNP was tested for association to CAD, and haplotypes within genes or gene clusters were tested using FBAT (Rabinowitz & Laird, 2000). For the most significant results, genetic effect size was estimated using conditional logistic regression (CLR) within STATA adjusting for other risk factors. Haplotypes were assigned using HAPLORE (Zhang et al., 2005), which considers all parental mating types consistent with offspring genotypes and assigns them a probability of occurence. This probability was used in CLR to weight the haplotypes. In the single SNP analysis, several SNPs showed some evidence for association, including one SNP in the interleukin-1A gene. Analysing haplotypes in the interleukin-1 gene cluster, a common 3-SNP haplotype was found to increase the risk of CAD (P = 0.009). In an additive genetic model adjusting for covariates the odds ratio (OR) for this haplotype is 1.56 (95% CI: 1.16-2.10, p = 0.004) for early-onset CAD (before age 50). This study illustrates the utility of haplotype analysis in family-based association studies to investigate candidate genes. References Rabinowitz, D. & Laird, N. M. (2000) Hum Hered50, 211,223. Zhang, K., Sun, F. & Zhao, H. (2005) Bioinformatics21, 90,103. Andrea Foulkes 1 , Recai Yucel 1 , Xiaohong Li 143 Division of Biostatistics, University of Massachusetts, USA Keywords: Haploytpe, high-dimensional, mixed modeling The explosion of molecular level information coupled with large epidemiological studies presents an exciting opportunity to uncover the genetic underpinnings of complex diseases; however, several analytical challenges remain to be addressed. Characterizing the components to complex diseases inevitably requires consideration of synergies across multiple genetic loci and environmental and demographic factors. In addition, it is critical to capture information on allelic phase, that is whether alleles within a gene are in cis (on the same chromosome) or in trans (on different chromosomes.) In associations studies of unrelated individuals, this alignment of alleles within a chromosomal copy is generally not observed. We address the potential ambiguity in allelic phase in this high dimensional data setting using mixed effects models. Both a semi-parametric and fully likelihood-based approach to estimation are considered to account for missingness in cluster identifiers. In the first case, we apply a multiple imputation procedure coupled with a first stage expectation maximization algorithm for parameter estimation. A bootstrap approach is employed to assess sensitivity to variability induced by parameter estimation. Secondly, a fully likelihood-based approach using an expectation conditional maximization algorithm is described. Notably, these models allow for characterizing high-order gene-gene interactions while providing a flexible statistical framework to account for the confounding or mediating role of person specific covariates. The proposed method is applied to data arising from a cohort of human immunodeficiency virus type-1 (HIV-1) infected individuals at risk for therapy associated dyslipidemia. Simulation studies demonstrate reasonable power and control of family-wise type 1 error rates. Vivien Marquard 1 , Lars Beckmann 1 , Jenny Chang-Claude 144 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany Keywords: Genotyping errors, type I error, haplotype-based association methods It has been shown in several simulation studies that genotyping errors may have a great impact on the type I error of statistical methods used in genetic association analysis of complex diseases. Our aim was to investigate type I error rates in a case-control study, when differential and non-differential genotyping errors were introduced in realistic scenarios. We simulated case-control data sets, where individual genotypes were drawn from a haplotype distribution of 18 haplotypes with 15 markers in the APM1 gene. Genotyping errors were introduced following the unrestricted and symmetric with 0 edges error models described by Heid et al. (2006). In six scenarios, errors resulted from changes of one allele to another with predefined probabilities of 1%, 2.5% or 10%, respectively. A multiple number of errors per haplotype was possible and could vary between 0 and 15, the number of markers investigated. We examined three association methods: Mantel statistics using haplotype-sharing; a haplotype-specific score test; and Armitage trend test for single markers. The type I error rates were not influenced for any of all the three methods for a genotyping error rate of less than 1%. For higher error rates and differential errors, the type I error of the Mantel statistic was only slightly and of the Armitage trend test moderately increased. The type I error rates of the score test were highly increased. The type I error rates were correct for all three methods for non-differential errors. Further investigations will be carried out with different frequencies of differential error rates and focus on power. Arne Neumann 1 , Dörthe Malzahn 1 , Martina Müller 2 , Heike Bickeböller 145 Department of Genetic Epidemiology, Medical School, University of Göttingen, Germany 46 GSF-National Research Center for Environment and Health, Neuherberg & IBE-Institute of Epidemiology, Ludwig-Maximilians University München, Germany Keywords: Interaction, longitudinal, nonparametric Longitudinal data show the time dependent course of phenotypic traits. In this contribution, we consider longitudinal cohort studies and investigate the association between two candidate genes and a dependent quantitative longitudinal phenotype. The set-up defines a factorial design which allows us to test simultaneously for the overall gene effect of the loci as well as for possible gene-gene and gene time interaction. The latter would induce genetically based time-profile differences in the longitudinal phenotype. We adopt a non-parametric statistical test to genetic epidemiological cohort studies and investigate its performance by simulation studies. The statistical test was originally developed for longitudinal clinical studies (Brunner, Munzel, Puri, 1999 J Multivariate Anal 70:286-317). It is non-parametric in the sense that no assumptions are made about the underlying distribution of the quantitative phenotype. Longitudinal observations belonging to the same individual can be arbitrarily dependent on one another for the different time points whereas trait observations of different individuals are independent. The two loci are assumed to be statistically independent. Our simulations show that the nonparametric test is comparable with ANOVA in terms of power of detecting gene-gene and gene-time interaction in an ANOVA favourable setting. Rebecca Hein 1 , Lars Beckmann 1 , Jenny Chang-Claude 147 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany Keywords: Indirect association studies, interaction effects, linkage disequilibrium, marker allele frequency Association studies accounting for gene-environment interactions (GxE) may be useful for detecting genetic effects and identifying important environmental effect modifiers. Current technology facilitates very dense marker spacing in genetic association studies; however, the true disease variant(s) may not be genotyped. In this situation, an association between a gene and a phenotype may still be detectable, using genetic markers associated with the true disease variant(s) (indirect association). Zondervan and Cardon [2004] showed that the odds ratios (OR) of markers which are associated with the disease variant depend highly on the linkage disequilibrium (LD) between the variant and the markers, and whether the allele frequencies match and thereby influence the sample size needed to detect genetic association. We examined the influence of LD and allele frequencies on the sample size needed to detect GxE in indirect association studies, and provide tables for sample size estimation. For discordant allele frequencies and incomplete LD, sample sizes can be unfeasibly large. The influence of both factors is stronger for disease loci with small rather than moderate to high disease allele frequencies. A decline in D' of e.g. 5% has less impact on sample size than increasing the difference in allele frequencies by the same percentage. Assuming 80% power, large interaction effects can be detected using smaller sample sizes than those needed for the detection of main effects. The detection of interaction effects involving rare alleles may not be possible. Focussing only on marker density can be a limited strategy in indirect association studies for GxE. Cyril Dalmasso 1 , Emmanuelle Génin 2 , Catherine Bourgain 2 , Philippe Broët 148 JE 2492 , Univ. Paris-Sud, France 49 INSERM UMR-S 535 and University Paris Sud, Villejuif, France Keywords: Linkage analysis, Multiple testing, False Discovery Rate, Mixture model In the context of genome-wide linkage analyses, where a large number of statistical tests are simultaneously performed, the False Discovery Rate (FDR) that is defined as the expected proportion of false discoveries among all discoveries is nowadays widely used for taking into account the multiple testing problem. Other related criteria have been considered such as the local False Discovery Rate (lFDR) that is a variant of the FDR giving to each test its own measure of significance. The lFDR is defined as the posterior probability that a null hypothesis is true. Most of the proposed methods for estimating the lFDR or the FDR rely on distributional assumption under the null hypothesis. However, in observational studies, the empirical null distribution may be very different from the theoretical one. In this work, we propose a mixture model based approach that provides estimates of the lFDR and the FDR in the context of large-scale variance component linkage analyses. In particular, this approach allows estimating the empirical null distribution, this latter being a key quantity for any simultaneous inference procedure. The proposed method is applied on a real dataset. Arief Gusnanto 1 , Frank Dudbridge 150 MRC Biostatistics Unit, Cambridge UK Keywords: Significance, genome-wide, association, permutation, multiplicity Genome-wide association scans have introduced statistical challenges, mainly in the multiplicity of thousands of tests. The question of what constitutes a significant finding remains somewhat unresolved. Permutation testing is very time-consuming, whereas Bayesian arguments struggle to distinguish direct from indirect association. It seems attractive to summarise the multiplicity in a simple form that allows users to avoid time-consuming permutations. A standard significance level would facilitate reporting of results and reduce the need for permutation tests. This is potentially important because current scans do not have full coverage of the whole genome, and yet, the implicit multiplicity is genome-wide. We discuss some proposed summaries, with reference to the empirical null distribution of the multiple tests, approximated through a large number of random permutations. Using genome-wide data from the Wellcome Trust Case-Control Consortium, we use a sub-sampling approach with increasing density to estimate the nominal p-value to obtain family-wise significance of 5%. The results indicate that the significance level is converging to about 1e-7 as the marker spacing becomes infinitely dense. We considered the concept of an effective number of independent tests, and showed that when used in a Bonferroni correction, the number varies with the overall significance level, but is roughly constant in the region of interest. We compared several estimators of the effective number of tests, and showed that in the region of significance of interest, Patterson's eigenvalue based estimator gives approximately the right family-wise error rate. Michael Nothnagel 1 , Amke Caliebe 1 , Michael Krawczak 151 Institute of Medical Informatics and Statistics, University Clinic Schleswig-Holstein, University of Kiel, Germany Keywords: Association scans, Bayesian framework, posterior odds, genetic risk, multiplicative model Whole-genome association scans have been suggested to be a cost-efficient way to survey genetic variation and to map genetic disease factors. We used a Bayesian framework to investigate the posterior odds of a genuine association under multiplicative disease models. We demonstrate that the p value alone is not a sufficient means to evaluate the findings in association studies. We suggest that likelihood ratios should accompany p values in association reports. We argue, that, given the reported results of whole-genome scans, more associations should have been successfully replicated if the consistently made assumptions about considerable genetic risks were correct. We conclude that it is very likely that the vast majority of relative genetic risks are only of the order of 1.2 or lower. Clive Hoggart 1 , Maria De Iorio 1 , John Whittakker 2 , David Balding 152 Department of Epidemiology and Public Health, Imperial College London, UK 53 Department of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, UK Keywords: Genome-wide association analyses, shrinkage priors, Lasso Testing one SNP at a time does not fully realise the potential of genome-wide association studies to identify multiple causal variants of small effect, which is a plausible scenario for many complex diseases. Moreover, many simulation studies assume a single causal variant and so more complex realities are ignored. Analysing large numbers of variants simultaneously is now becoming feasible, thanks to developments in Bayesian stochastic search methods. We pose the problem of SNP selection as variable selection in a regression model. In contrast to single SNP tests this approach simultaneously models the effect of all SNPs. SNPs are selected by a Bayesian interpretation of the lasso (Tibshirani, 1996); the maximum a posterior (MAP) estimate of the regression coefficients, which have been given independent, double exponential prior distributions. The double exponential distribution is an example of a shrinkage prior, MAP estimates with shrinkage priors can be zero, thus all SNPs with non zero regression coefficients are selected. In addition to the commonly-used double exponential (Laplace) prior, we also implement the normal exponential gamma prior distribution. We show that use of the Laplace prior improves SNP selection in comparison with single -SNP tests, and that the normal exponential gamma prior leads to a further improvement. Our method is fast and can handle very large numbers of SNPs: we demonstrate its performance using both simulated and real genome-wide data sets with 500 K SNPs, which can be analysed in 2 hours on a desktop workstation. Mickael Guedj 1,2 , Jerome Wojcik 2 , Gregory Nuel 154 Laboratoire Statistique et Génome, Université d'Evry, Evry France 55 Serono Pharmaceutical Research Institute, Plan-les-Ouates, Switzerland Keywords: Local Replication, Local Score, Association In gene-mapping, replication of initial findings has been put forwards as the approach of choice for filtering false-positives from true signals for underlying loci. In practice, such replications are however too poorly observed. Besides the statistical and technical-related factors (lack of power, multiple-testing, stratification, quality control,) inconsistent conclusions obtained from independent populations might result from real biological differences. In particular, the high degree of variation in the strength of LD among populations of different origins is a major challenge to the discovery of genes. Seeking for Local Replications (defined as the presence of a signal of association in a same genomic region among populations) instead of strict replications (same locus, same risk allele) may lead to more reliable results. Recently, a multi-markers approach based on the Local Score statistic has been proposed as a simple and efficient way to select candidate genomic regions at the first stage of genome-wide association studies. Here we propose an extension of this approach adapted to replicated association studies. Based on simulations, this method appears promising. In particular it outperforms classical simple-marker strategies to detect modest-effect genes. Additionally it constitutes, to our knowledge, a first framework dedicated to the detection of such Local Replications. Juliet Chapman 1 , Claudio Verzilli 1 , John Whittaker 156 Department of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, UK Keywords: FDR, Association studies, Bayesian model selection As genomewide association studies become commonplace there is debate as to how such studies might be analysed and what we might hope to gain from the data. It is clear that standard single locus approaches are limited in that they do not adjust for the effects of other loci and problematic since it is not obvious how to adjust for multiple comparisons. False discovery rates have been suggested, but it is unclear how well these will cope with highly correlated genetic data. We consider the validity of standard false discovery rates in large scale association studies. We also show that a Bayesian procedure has advantages in detecting causal loci amongst a large number of dependant SNPs and investigate properties of a Bayesian FDR. Peter Kraft 157 Harvard School of Public Health, Boston USA Keywords: Gene-environment interaction, genome-wide association scans Appropriately analyzed two-stage designs,where a subset of available subjects are genotyped on a genome-wide panel of markers at the first stage and then a much smaller subset of the most promising markers are genotyped on the remaining subjects,can have nearly as much power as a single-stage study where all subjects are genotyped on the genome-wide panel yet can be much less expensive. Typically, the "most promising" markers are selected based on evidence for a marginal association between genotypes and disease. Subsequently, the few markers found to be associated with disease at the end of the second stage are interrogated for evidence of gene-environment interaction, mainly to understand their impact on disease etiology and public health impact. However, this approach may miss variants which have a sizeable effect restricted to one exposure stratum and therefore only a modest marginal effect. We have proposed to use information on the joint effects of genes and a discrete list of environmental exposures at the initial screening stage to select promising markers for the second stage [Kraft et al Hum Hered 2007]. This approach optimizes power to detect variants that have a sizeable marginal effect and variants that have a small marginal effect but a sizeable effect in a stratum defined by an environmental exposure. As an example, I discuss a proposed genome-wide association scan for Type II diabetes susceptibility variants based in several large nested case-control studies. Beate Glaser 1 , Peter Holmans 158 Biostatistics and Bioinformatics Unit, Cardiff University, School of Medicine, Heath Park, Cardiff, UK Keywords: Combined case-control and trios analysis, Power, False-positive rate, Simulation, Association studies The statistical power of genetic association studies can be enhanced by combining the analysis of case-control with parent-offspring trio samples. Various combined analysis techniques have been recently developed; as yet, there have been no comparisons of their power. This work was performed with the aim of identifying the most powerful method among available combined techniques including test statistics developed by Kazeem and Farrall (2005), Nagelkerke and colleagues (2004) and Dudbridge (2006), as well as a simple combination of ,2-statistics from single samples. Simulation studies were performed to investigate their power under different additive, multiplicative, dominant and recessive disease models. False-positive rates were determined by studying the type I error rates under null models including models with unequal allele frequencies between the single case-control and trios samples. We identified three techniques with equivalent power and false-positive rates, which included modifications of the three main approaches: 1) the unmodified combined Odds ratio estimate by Kazeem & Farrall (2005), 2) a modified approach of the combined risk ratio estimate by Nagelkerke & colleagues (2004) and 3) a modified technique for a combined risk ratio estimate by Dudbridge (2006). Our work highlights the importance of studies investigating test performance criteria of novel methods, as they will help users to select the optimal approach within a range of available analysis techniques. David Almorza 1 , M.V. Kandus 2 , Juan Carlos Salerno 2 , Rafael Boggio 359 Facultad de Ciencias del Trabajo, University of Cádiz, Spain 60 Instituto de Genética IGEAF, Buenos Aires, Argentina 61 Universidad Nacional de La Plata, Buenos Aires, Argentina Keywords: Principal component analysis, maize, ear weight, inbred lines The objective of this work was to evaluate the relationship among different traits of the ear of maize inbred lines and to group genotypes according to its performance. Ten inbred lines developed at IGEAF (INTA Castelar) and five public inbred lines as checks were used. A field trial was carried out in Castelar, Buenos Aires (34° 36' S , 58° 39' W) using a complete randomize design with three replications. At harvest, individual weight (P.E.), diameter (D.E.), row number (N.H.) and length (L.E.) of the ear were assessed. A principal component analysis, PCA, (Infostat 2005) was used, and the variability of the data was depicted with a biplot. Principal components 1 and 2 (CP1 and CP2) explained 90% of the data variability. CP1 was correlated with P.E., L.E. and D.E., meanwhile CP2 was correlated with N.H. We found that individual weight (P.E.) was more correlated with diameter of the ear (D.E.) than with length (L.E). Five groups of inbred lines were distinguished: with high P.E. and mean N.H. (04-70, 04-73, 04-101 and MO17), with high P.E. but less N.H. (04-61 and B14), with mean P.E. and N.H. (B73, 04-123 and 04-96), with high N.H. but less P.E. (LP109, 04-8, 04-91 and 04-76) and with low P.E. and low N.H. (LP521 and 04-104). The use of PCA showed which variables had more incidence in ear weight and how is the correlation among them. Moreover, the different groups found with this analysis allow the evaluation of inbred lines by several traits simultaneously. Sven Knüppel 1 , Anja Bauerfeind 1 , Klaus Rohde 162 Department of Bioinformatics, MDC Berlin, Germany Keywords: Haplotypes, association studies, case-control, nuclear families The area of gene chip technology provides a plethora of phase-unknown SNP genotypes in order to find significant association to some genetic trait. To circumvent possibly low information content of a single SNP one groups successive SNPs and estimates haplotypes. Haplotype estimation, however, may reveal ambiguous haplotype pairs and bias the application of statistical methods. Zaykin et al. (Hum Hered, 53:79-91, 2002) proposed the construction of a design matrix to take this ambiguity into account. Here we present a set of functions written for the Statistical package R, which carries out haplotype estimation on the basis of the EM-algorithm for individuals (case-control) or nuclear families. The construction of a design matrix on basis of estimated haplotypes or haplotype pairs allows application of standard methods for association studies (linear, logistic regression), as well as statistical methods as haplotype sharing statistics and TDT-Test. Applications of these methods to genome-wide association screens will be demonstrated. Manuela Zucknick 1 , Chris Holmes 2 , Sylvia Richardson 163 Department of Epidemiology and Public Health, Imperial College London, UK 64 Department of Statistics, Oxford Center for Gene Function, University of Oxford, UK Keywords: Bayesian, variable selection, MCMC, large p, small n, structured dependence In large-scale genomic applications vast numbers of markers or genes are scanned to find a few candidates which are linked to a particular phenotype. Statistically, this is a variable selection problem in the "large p, small n" situation where many more variables than samples are available. An additional feature is the complex dependence structure which is often observed among the markers/genes due to linkage disequilibrium or their joint involvement in biological processes. Bayesian variable selection methods using indicator variables are well suited to the problem. Binary phenotypes like disease status are common and both Bayesian probit and logistic regression can be applied in this context. We argue that logistic regression models are both easier to tune and to interpret than probit models and implement the approach by Holmes & Held (2006). Because the model space is vast, MCMC methods are used as stochastic search algorithms with the aim to quickly find regions of high posterior probability. In a trade-off between fast-updating but slow-moving single-gene Metropolis-Hastings samplers and computationally expensive full Gibbs sampling, we propose to employ the dependence structure among the genes/markers to help decide which variables to update together. Also, parallel tempering methods are used to aid bold moves and help avoid getting trapped in local optima. Mixing and convergence of the resulting Markov chains are evaluated and compared to standard samplers in both a simulation study and in an application to a gene expression data set. Reference Holmes, C. C. & Held, L. (2006) Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis1, 145,168. Dawn Teare 165 MMGE, University of Sheffield, UK Keywords: CNP, family-based analysis, MCMC Evidence is accumulating that segmental copy number polymorphisms (CNPs) may represent a significant portion of human genetic variation. These highly polymorphic systems require handling as phenotypes rather than co-dominant markers, placing new demands on family-based analyses. We present an integrated approach to meet these challenges in the form of a graphical model, where the underlying discrete CNP phenotype is inferred from the (single or replicate) quantitative measure within the analysis, whilst assuming an allele based system segregating through the pedigree. [source] Modulatory effects of static magnetic fields on blood pressure in rabbitsBIOELECTROMAGNETICS, Issue 6 2001Hideyuki Okano Abstract Acute effects of locally applied static magnetic fields (SMF) on pharmacologically altered blood pressure (BP) in a central artery of the ear lobe of a conscious rabbit were evaluated. Hypotensive and vasodilator actions were induced by a Ca2+ channel blocker, nicardipine (NIC). Hypertensive and vasoconstrictive actions were induced by a nitric oxide synthase (NOS) inhibitor, N, -nitro- L -arginine methyl ester (L-NAME). The hemodynamic changes in the artery exposed to SMF were measured continuously and analyzed by penetrating microphotoelectric plethysmography (MPPG). Concurrently, BP changes in a central artery contralateral to that of the exposed ear lobe were monitored. SMF intensity was 1,mT and the duration of exposure was 30,min. A total of 180 experimental trials were carried out in 34 healthy adult male rabbits weighing 2.6,3.8,kg. Six experimental procedures were chosen at random: (1) sham exposure without pharmacological treatment; (2) SMF exposure alone; (3) decreased BP induced by a single intravenous (iv) bolus injection of NIC (100,,M/kg) without SMF exposure; (4) decreased BP induced by injection of NIC with SMF exposure; (5) increased BP induced by a constant iv infusion of L-NAME (10,mM/kg/h) without SMF exposure; (6) increased BP induced by infusion of L-NAME with SMF exposure. The results demonstrated that SMF significantly reduced the vasodilatation with enhanced vasomotion and antagonized the reduction of BP via NIC-blocked Ca2+ channels in vascular smooth muscle cells. In addition, SMF significantly attenuated the vasoconstriction and suppressed the elevation of BP via NOS inhibition in vascular endothelial cells and/or central nervous system neurons. These results suggest that these modulatory effects of SMF on BP might, in part, involve a feedback control system for alteration in NOS activity in conjunction with modulation of Ca2+ dynamics. Bioelectromagnetics 22:408,418, 2001. © 2001 Wiley-Liss, Inc. [source] Effects of 4 months of smoking in mice with ovalbumin-induced airway inflammationCLINICAL & EXPERIMENTAL ALLERGY, Issue 12 2007B. N. Melgert Summary Background The effects of smoking on asthma pathogenesis are complex and not well studied. We have shown recently that 3 weeks of smoking attenuates ovalbumin (OVA)-induced airway inflammation in mice and that 4,6 months of smoking induces emphysema in mice without airway inflammation. Effects of combined long-term smoking and OVA exposure have not been investigated so far. Objective To study whether long-term smoking affects progression of allergic airway inflammation and/or enhances the development of emphysema in mice. Methods Mice were sensitized to OVA and challenged with saline or OVA aerosols for 6 months. From 2 months onwards, mice were also exposed to air or smoke. Lung tissue was analysed for extent of inflammation, emphysema, remodelling and for cytokine levels, and serum for OVA-specific IgE levels. Results Chronic OVA exposure of 6 months resulted in a T helper type 2 (Th2)-type inflammation with increased levels of IL-4, IL-5, IL-6 and infiltration of eosinophils, CD4+ T cells, macrophages and plasma cells. Smoking induced a Th17-type of airway inflammation, characterized by neutrophils, macrophages, B cells and increased levels of IL-17, IL-6, granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor and monocyte chemoattractant protein-1. Concomittant smoking and OVA exposure resulted in inflammation similar to OVA exposure alone. OVA exposure increased IgE levels compared with saline exposure, and smoking did not further increase these levels. Conclusion We did not find evidence for increased inflammation, IgE levels or emphysema in mice with allergic airway inflammation after 4 months of smoking compared with non-smoking. However, a 4-month exposure to smoke alone did enhance neutrophilic airway inflammation characterized by high pulmonary IL-17 levels. A Th2 inflammatory environment due to OVA exposure may be one explanation as to why no further detrimental effects of smoking on allergic airway inflammation were found. [source] Adverse health effects related to tobacco smoke exposure in a cohort of three-year oldsACTA PAEDIATRICA, Issue 3 2008AnnaKarin Johansson Abstract Aim: To analyse the importance of mothers' smoking during pregnancy and/or environmental tobacco smoke (ETS) exposure in early childhood for children's health and well-being at the age of 3 years. Methods: Four groups from a population based cohort (n = 8850) were compared: children with nonsmoking mother during pregnancy and nonsmoking parents at the age of 3 years (n = 7091); children with only foetal exposure (n = 149); children exposed only postnatally (n = 895) and children exposed both pre- and postnatally (n = 595). Odds ratios and 95% confidence intervals were calculated. Results: Children exposed both pre- and postnatally had more wheezing (1.14; 1.07,1.21) and rhinitis (1.16; 1.06,1.26), used more cough-mixture (1.07; 1.01,1.14) and broncodilatating drugs (1.08; 1.02,1.15) and suffered more from excessive crying (1.31; 1.13,1.51) and irritability (1.27; 1.09,1.48) compared to children with nonsmoking parents. Children exposed only postnatally had more rhinitis (1.24; 1.12,1.37), used more cough-mixture (1.14; 1.05,1.29) and suffered more from poor sleep (1.26; 1.07,1.47) than children of nonsmoking parents. Children with prenatal exposure only used more broncodilatating drugs (1.45; 1.03,2.04) and suffered more from poor sleep (2.06; 1.09,3.87). Conclusion: Health differences, small but significant, indicate that prenatal and/or postnatal ETS exposure alone, or in combination, seems to interfere with child health, supporting the importance of zero tolerance. However, as most smoking parents in Sweden try to protect their children from ETS exposure, the results also might indicate that protective measures are worthwhile. [source] |