Age-associated Alterations (age-associated + alteration)

Distribution by Scientific Domains


Selected Abstracts


Immunosenescence: emerging challenges for an ageing population

IMMUNOLOGY, Issue 4 2007
Danielle Aw
Summary It is now becoming apparent that the immune system undergoes age-associated alterations, which accumulate to produce a progressive deterioration in the ability to respond to infections and to develop immunity after vaccination, both of which are associated with a higher mortality rate in the elderly. Immunosenescence, defined as the changes in the immune system associated with age, has been gathering interest in the scientific and health-care sectors alike. The rise in its recognition is both pertinent and timely given the increasing average age and the corresponding failure to increase healthy life expectancy. This review attempts to highlight the age-dependent defects in the innate and adaptive immune systems. While discussing the mechanisms that contribute to immunosenescence, with emphasis on the extrinsic factors, particular attention will be focused on thymic involution. Finally, we illuminate potential therapies that could be employed to help us live a longer, fuller and healthier life. [source]


Toll-Like Receptors in Older Adults

JOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 9 2007
David Van Duin MD
Toll-like receptors (TLRs) recognize a limited number of conserved elements in pathogens and, by activating antigen-presenting cells such as dendritic cells and monocytes and macrophages, play a crucial role in the immune response to infection and vaccination. Most data on TLR function in the context of human aging focus on responses to lipopolysaccharide, an integral component of gram-negative bacteria, which signals through TLR4. However, such studies have not led to a consensus conclusion and are limited by differences in epidemiological and laboratory methods. A recent comprehensive evaluation of TLR function in monocytes from older adults was conducted using a multivariable mixed statistical model to account for covariates. It was found that cytokine production after TLR1/2 engagement, which is essential for the recognition of triacylated lipopeptides found in a variety of bacteria, is substantially lower in monocytes from older adults. The upregulation of costimulatory proteins such as CD80, essential for optimal activation of T cells, on monocytes from older adults was less for all TLR ligands tested than for cells from young individuals, and the extent of CD80 upregulation predicted subsequent antibody response to influenza immunization. These and other consequences of aging on human TLR function may impair activation of the immune response and contribute to poorer vaccine responses and greater morbidity and mortality from infectious diseases in older adults. Such age-associated alterations have particular relevance in view of the interest in TLR agonists as therapeutic agents not only for infections, but also for allergic, autoimmune, and malignant disease. [source]


Reversal of aging-associated hippocampal synaptic plasticity deficits by reductants via regulation of thiol redox and NMDA receptor function

AGING CELL, Issue 5 2010
Yuan-Jian Yang
Summary Deficits in learning and memory accompanied by age-related neurodegenerative diseases are closely related to the impairment of synaptic plasticity. In this study, we investigated the role of thiol redox status in the modulation of the N -methyl- d -aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) in CA1 areas of hippocampal slices. Our results demonstrated that the impaired LTP induced by aging could be reversed by acute administration of reductants that can regulate thiol redox status directly, such as dithiothreitol or ,-mercaptoethanol, but not by classical anti-oxidants such as vitamin C or trolox. This repair was mediated by the recruitment of aging-related deficits in NMDAR function induced by these reductants and was mimicked by glutathione, which can restore the age-associated alterations in endogenous thiol redox status. Moreover, antioxidant prevented but failed to reverse H2O2 -induced impairment of NMDAR-mediated synaptic plasticity. These results indicate that the restoring of thiol redox status may be a more effective strategy than the scavenging of oxidants in the treatment of pre-existing oxidative injury in learning and memory. [source]


Molecular architecture of myelinated peripheral nerves is supported by calorie restriction with aging

AGING CELL, Issue 2 2009
Sunitha Rangaraju
Summary Peripheral nerves from aged animals exhibit features of degeneration, including marked fiber loss, morphological irregularities in myelinated axons and notable reduction in the expression of myelin proteins. To investigate how protein homeostatic mechanisms change with age within the peripheral nervous system, we isolated Schwann cells from the sciatic nerves of young and old rats. The responsiveness of cells from aged nerves to stress stimuli is weakened, which in part may account for the observed age-associated alterations in glial and axonal proteins in vivo. Although calorie restriction is known to slow the aging process in the central nervous system, its influence on peripheral nerves has not been investigated in detail. To determine if dietary restriction is beneficial for peripheral nerve health and glial function, we studied sciatic nerves from rats of four distinct ages (8, 18, 29 and 38 months) kept on an ad libitum (AL) or a 40% calorie restricted diet. Age-associated reduction in the expression of the major myelin proteins and widening of the nodes of Ranvier are attenuated by the dietary intervention, which is paralleled with the maintenance of a differentiated Schwann cell phenotype. The improvements in nerve architecture with diet restriction, in part, are underlined by sustained expression of protein chaperones and markers of the autophagy,lysosomal pathway. Together, the in vitro and in vivo results suggest that there might be an age-limit by which dietary intervention needs to be initiated to elicit a beneficial response on peripheral nerve health. [source]