Home About us Contact | |||
Existing Solutions (existing + solution)
Selected AbstractsAxisymmetric interaction of a rigid disc with a transversely isotropic half-spaceINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 12 2010Amir Aabbas Katebi Abstract A theoretical formulation is presented for the determination of the interaction of a vertically loaded disc embedded in a transversely isotropic half-space. By means of a complete representation using a displacement potential, it is shown that the governing equations of motion for this class of problems can be uncoupled into a fourth-order partial differential equation. With the aid of Hankel transforms, a relaxed treatment of the mixed-boundary value problem is formulated as dual integral equations, which, in turn, are reduced to a Fredholm equation of the second kind. In addition to furnishing a unified view of existing solutions for zero and infinite embedments, the present treatment reveals a severe boundary-layer phenomenon, which is apt to be of interest to this class of problems in general. The present solutions are analytically in exact agreement with the existing solutions for a half-space with isotropic material properties. To confirm the accuracy of the numerical evaluation of the integrals involved, numerical results are included for cases of different degrees of the material anisotropy and compared with existing solutions. Further numerical examples are also presented to elucidate the influence of the degree of the material anisotropy on the response. Copyright © 2009 John Wiley & Sons, Ltd. [source] A spline strip kernel particle method and its application to two-dimensional elasticity problemsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 5 2003K. M. Liew Abstract In this paper we present a novel spline strip kernel particle method (SSKPM) that has been developed for solving a class of two-dimensional (2D) elasticity problems. This new approach combines the concepts of the mesh-free methods and the spline strip method. For the interpolation of the assumed displacement field, we employed the kernel particle shape functions in the transverse direction, and the B3 -spline function in the longitudinal direction. The formulation is validated on several beam and semi-infinite plate problems. The numerical results of these test problems are then compared with the existing solutions obtained by the exact or numerical methods. From this study we conclude that the SSKPM is a potential alternative to the classical finite strip method (FSM). Copyright © 2003 John Wiley & Sons, Ltd. [source] An effective IPv4,IPv6 translation mechanism for SIP applications in next generation networksINTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 8 2010Whai-En Chen Abstract In a next generation network, the IPv6-enabled IP multimedia subsystem (IMS) network may connect to an IPv4 network. When an IPv4/IPv6 dual-stack user equipment (UE) initiates a call by sending an IPv6 SIP INVITE message to an IPv4-only user agent (UA), the call cannot be established correctly. To resolve this problem, the IMS-application layer gateway solution, the redirect solution, and the interactive connectivity establishment solution have been proposed. In this paper, we propose an effective solution where only the IPv6 INVITE message is translated into an IPv4 INVITE message. Upon receipt of the IPv4 200 OK message replied from the IPv4-only UA, the dual-stack UE learns that the correspondent UA supports IPv4-only and utilizes IPv4 instead of IPv6 to send the subsequent SIP messages and real-time transport protocol (RTP) packets. The proposed solution is compared with the existing solutions in terms of network node modification, call setup complexity, and RTP transmission latency. Our study indicates that the proposed solution outperforms the other three solutions in the call setup and the RTP transmission. Copyright © 2009 John Wiley & Sons, Ltd. [source] Managing QoS requirements for video streaming: from intra-node to inter-nodeINTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 5 2006Y. Bai Abstract Streaming video over IP networks has become increasingly popular; however, compared to traditional data traffic, video streaming places different demands on quality of service (QoS) in a network, particularly in terms of delay, delay variation, and data loss. In response to the QoS demands of video applications, network techniques have been proposed to provide QoS within a network. Unfortunately, while efficient from a network perspective, most existing solutions have not provided end-to-end QoS that is satisfactory to users. In this paper, packet scheduling and end-to-end QoS distribution schemes are proposed to address this issue. The design and implementation of the two schemes are based on the active networking paradigm. In active networks, routers can perform user-driven computation when forwarding packets, rather than just simple storing and forwarding packets, as in traditional networks. Both schemes thus take advantage of the capability of active networks enabling routers to adapt to the content of transmitted data and the QoS requirements of video users. In other words, packet scheduling at routers considers the correlation between video characteristics, available local resources and the resulting visual quality. The proposed QoS distribution scheme performs inter-node adaptation, dynamically adjusting local loss constraints in response to network conditions in order to satisfy the end-to-end loss requirements. An active network-based simulation shows that using QoS distribution and packet scheduling together increases the probability of meeting end-to-end QoS requirements of networked video. Copyright © 2005 John Wiley & Sons, Ltd. [source] LMI optimization approach to robust H, observer design and static output feedback stabilization for discrete-time nonlinear uncertain systemsINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 3 2009Masoud Abbaszadeh Abstract A new approach for the design of robust H, observers for a class of Lipschitz nonlinear systems with time-varying uncertainties is proposed based on linear matrix inequalities (LMIs). The admissible Lipschitz constant of the system and the disturbance attenuation level are maximized simultaneously through convex multiobjective optimization. The resulting H, observer guarantees asymptotic stability of the estimation error dynamics and is robust against nonlinear additive uncertainty and time-varying parametric uncertainties. Explicit norm-wise and element-wise bounds on the tolerable nonlinear uncertainty are derived. Also, a new method for the robust output feedback stabilization with H, performance for a class of uncertain nonlinear systems is proposed. Our solution is based on a noniterative LMI optimization and is less restrictive than the existing solutions. The bounds on the nonlinear uncertainty and multiobjective optimization obtained for the observer are also applicable to the proposed static output feedback stabilizing controller. Copyright © 2008 John Wiley & Sons, Ltd. [source] |