Home About us Contact | |||
Excitotoxicity
Kinds of Excitotoxicity Selected AbstractsExcitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of l -carnitineJOURNAL OF NEUROCHEMISTRY, Issue 3 2008Daniela Silva-Adaya Abstract Excitotoxicity and disrupted energy metabolism are major events leading to nerve cell death in neurodegenerative disorders. These cooperative pathways share one common aspect: triggering of oxidative stress by free radical formation. In this work, we evaluated the effects of the antioxidant and energy precursor, levocarnitine (l -CAR), on the oxidative damage and the behavioral, morphological, and neurochemical alterations produced in nerve tissue by the excitotoxin and free radical precursor, quinolinic acid (2,3-pyrindin dicarboxylic acid; QUIN), and the mitochondrial toxin, 3-nitropropionic acid (3-NP). Oxidative damage was assessed by the estimation of reactive oxygen species formation, lipid peroxidation, and mitochondrial dysfunction in synaptosomal fractions. Behavioral, morphological, and neurochemical alterations were evaluated as markers of neurotoxicity in animals systemically administered with l -CAR, chronically injected with 3-NP and/or intrastriatally infused with QUIN. At micromolar concentrations, l -CAR reduced the three markers of oxidative stress stimulated by both toxins alone or in combination. l -CAR also prevented the rotation behavior evoked by QUIN and the hypokinetic pattern induced by 3-NP in rats. Morphological alterations produced by both toxins (increased striatal glial fibrillary acidic protein-immunoreactivity for QUIN and enhanced neuronal damage in different brain regions for 3-NP) were reduced by l -CAR. In addition, l -CAR prevented the synergistic action of 3-NP and QUIN to increase motor asymmetry and depleted striatal GABA levels. Our results suggest that the protective properties of l -CAR in the neurotoxic models tested are mostly mediated by its characteristics as an antioxidant agent. [source] Enzymatic Degradation Protects Neurons from Glutamate ExcitotoxicityJOURNAL OF NEUROCHEMISTRY, Issue 3 2000Christopher C. Matthews Abstract: Several enzymes with the capacity to degrade glutamate have been suggested as possible neuroprotectants. We initially evaluated the kinetic properties of glutamate pyruvate transaminase (GPT; also known as alanine aminotransferase), glutamine synthetase, and glutamate dehydrogenase under physiologic conditions to degrade neurotoxic concentrations of glutamate. Although all three enzymes initially degraded glutamate rapidly, only GPT was able to reduce toxic (500 ,M) levels of glutamate into the physiologic (<20 ,M) range. Primary cultures of fetal murine cortical neurons were subjected to paradigms of either exogenous or endogenous glutamate toxicity to evaluate the neuroprotective value of GPT. Neuronal survival after exposure to added glutamate ranging from 100 to 500 ,M was improved significantly in the presence of GPT (,1 U/ml). Cultures were also exposed to the glutamate transporter inhibitor L- trans -pyrrolidine-2,4-dicarboxylate (PDC), which produces neuronal injury by elevating extracellular glutamate. GPT significantly reduced the toxicity of PDC. This reduction was associated with a reduction in the PDC-dependent rise in the medium concentration of glutamate. These results suggest that enzymatic degradation of glutamate by GPT can be an alternative to glutamate receptor blockade as a strategy to protect neurons from excitotoxic injury. [source] Depression gets old fast: do stress and depression accelerate cell aging?,DEPRESSION AND ANXIETY, Issue 4 2010Owen M. Wolkowitz M.D. Abstract Depression has been likened to a state of "accelerated aging," and depressed individuals have a higher incidence of various diseases of aging, such as cardiovascular and cerebrovascular diseases, metabolic syndrome, and dementia. Chronic exposure to certain interlinked biochemical pathways that mediate stress-related depression may contribute to "accelerated aging," cell damage, and certain comorbid medical illnesses. Biochemical mediators explored in this theoretical review include the hypothalamic,pituitary,adrenal axis (e.g., hyper- or hypoactivation of glucocorticoid receptors), neurosteroids, such as dehydroepiandrosterone and allopregnanolone, brain-derived neurotrophic factor, excitotoxicity, oxidative and inflammatory stress, and disturbances of the telomere/telomerase maintenance system. A better appreciation of the role of these mediators in depressive illness could lead to refined models of depression, to a re-conceptualization of depression as a whole body disease rather than just a "mental illness," and to the rational development of new classes of medications to treat depression and its related medical comorbidities. Depression and Anxiety, 2010. © 2010 Wiley-Liss, Inc. [source] Reduced metabolites mediate neuroprotective effects of progesterone in the adult rat hippocampus.DEVELOPMENTAL NEUROBIOLOGY, Issue 9 2006The synthetic progestin medroxyprogesterone acetate (Provera) is not neuroprotective Abstract The ovarian hormone progesterone is neuroprotective in different experimental models of neurodegeneration. In the nervous system, progesterone is metabolized to 5,-dihydroprogesterone (DHP) by the enzyme 5,-reductase. DHP is subsequently reduced to 3,,5,-tetrahydroprogesterone (THP) by a reversible reaction catalyzed by the enzyme 3,-hydroxysteroid dehydrogenase. In this study we have analyzed whether progesterone metabolism is involved in the neuroprotective effect of the hormone in the hilus of the hippocampus of ovariectomized rats injected with kainic acid, an experimental model of excitotoxic cell death. Progesterone increased the levels of DHP and THP in plasma and hippocampus and prevented kainic-acid-induced neuronal loss. In contrast to progesterone, the synthetic progestin medroxyprogesterone acetate (MPA, Provera) did not increase DHP and THP levels and did not prevent kainic-acid-induced neuronal loss. The administration of the 5,-reductase inhibitor finasteride prevented the increase in the levels of DHP and THP in plasma and hippocampus as a result of progesterone administration and abolished the neuroprotective effect of progesterone. Both DHP and THP were neuroprotective against kainic acid. However, the administration of indomethacin, a 3,-hydroxysteroid dehydrogenase inhibitor, blocked the neuroprotective effect of both DHP and THP, suggesting that both metabolites are necessary for the neuroprotective effect of progesterone. In conclusion, our findings indicate that progesterone is neuroprotective against kainic acid excitotoxicity in vivo while the synthetic progestin MPA is not and suggest that progesterone metabolism to its reduced derivatives DHP and THP is necessary for the neuroprotective effect of the hormone. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Human herpes virus 6B: A possible role in epilepsy?EPILEPSIA, Issue 11 2008William H. Theodore Summary Human herpes virus 6 (HHV6) infection is nearly ubiquitous in childhood and may include central nervous system invasion. There are two variants, HHV6A and HHV6B. Usually asymptomatic, it is associated with the common, self-limited childhood illness roseola infantum and rarely with more severe syndromes. In patients with immune compromise, subsequent reactivation of viral activity may lead to severe limbic encephalitis. HHV6 has been identified as a possible etiologic agent in multiple sclerosis, myocarditis, and encephalitis. A preponderance of evidence supports an association between HHV6 and febrile seizures. An ongoing multicenter study is investigating possible links between HHV6 infection, febrile status epilepticus, and development of mesial temporal sclerosis (MTS). Investigation of temporal lobectomy specimens showed evidence of active HHV6B but not HHV6A replication in hippocampal astrocytes in about two-thirds of patients with MTS but not other causes of epilepsy. It has been suggested that HHV6B may cause "excitotoxicity" by interfering with astrocyte excitatory amino acid transport. Although conventional inflammatory changes are not found in most MTS specimens, inflammatory modulators may play a role in neuronal injury leading to MTS as well. If the link between early viral infection, complex or prolonged febrile seizures, and later development of intractable temporal lobe epilepsy is confirmed, new therapeutic approaches to a common intractable epilepsy syndrome may be possible. [source] Growth hormone-releasing peptide 6 protection of hypothalamic neurons from glutamate excitotoxicity is caspase independent and not mediated by insulin-like growth factor IEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2009A. Delgado-Rubín Abstract Treatment of the fetal hypothalamic neuronal cell line RCA-6 with growth hormone-releasing peptide 6, an agonist of the ghrelin receptor, or insulin-like growth factor I activates intracellular signalling cascades associated with anti-apoptotic actions. Abnormally high concentrations of glutamate provoke over-excitation of neurons leading to cell damage and apoptosis. Thus, the aim of this study was to investigate whether the administration of growth hormone-releasing peptide 6 and insulin-like growth factor I attenuates monosodium glutamate-induced apoptosis in RCA-6 neurons and the mechanisms involved. Two different mechanisms are involved in glutamate-induced cell death, one by means of caspase activation and the second through activation of a caspase-independent pathway of apoptosis mediated by the translocation of apoptosis-inducing factor. Growth hormone-releasing peptide 6 partially reversed glutamate-induced cell death but not the activation of caspases, suggesting blockage of the caspase-independent cell death pathway, which included interference with the translocation of apoptosis-inducing factor to the nucleus associated with the induction of Bcl-2. In contrast, the addition of insulin-like growth factor I to RCA-6 neurons abolished glutamate-induced caspase activation and cell death. These data demonstrate for the first time a neuroprotective role for growth hormone secretagogues in the caspase-independent cell death pathway and indicate that these peptides have neuroprotective effects independent of its induction of insulin-like growth factor I. [source] MAP-kinase-activated protein kinase 2 expression and activity is induced after neuronal depolarizationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2008Tobias Thomas Abstract Mitogen-activated protein kinase-activated protein kinase (MK)2 is one of several downstream targets of p38 mitogen-activated protein kinase and has a well documented role in inflammation. Here, we describe a possible new function of MK2. We show that triggering depolarization by potassium chloride or increasing the cellular cAMP by forskolin treatment led to elevated levels of expression and activity of mouse MK2. In both treatments, the kinase inhibitor H89 completely prevented the up-regulation of MK2 at the transcript level. By the use of different cell lines we demonstrated that the induction of MK2 expression is characteristic of neuronal cells and is absent in fibroblasts, macrophages and kidney cells. In vivo, induction of a status epilepticus by systemic administration of the chemoconvulsant kainic acid resulted in markedly reduced neurodegeneration in the pyramidal layer of the hippocampus, dentate gyrus and hilus of MK2-deficient mice compared with wild-type mice. Together, our data suggest a possible role of MK2 in the cellular response after neuronal depolarization, in particular in excitotoxicity. [source] Mechanisms of neurodegeneration in Huntington's diseaseEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2008Joana M. Gil Abstract Huntington's disease (HD) is caused by an expansion of cytosine,adenine,guanine (CAG) repeats in the huntingtin gene, which leads to neuronal loss in the striatum and cortex and to the appearance of neuronal intranuclear inclusions of mutant huntingtin. Huntingtin plays a role in protein trafficking, vesicle transport, postsynaptic signaling, transcriptional regulation, and apoptosis. Thus, a loss of function of the normal protein and a toxic gain of function of the mutant huntingtin contribute to the disruption of multiple intracellular pathways. Furthermore, excitotoxicity, dopamine toxicity, metabolic impairment, mitochondrial dysfunction, oxidative stress, apoptosis, and autophagy have been implicated in the progressive degeneration observed in HD. Nevertheless, despite the efforts of a multidisciplinary scientific community, there is no cure for this devastating neurodegenerative disorder. This review presents an overview of the mechanisms that may contribute for HD pathogenesis. Ultimately, a better understanding of these mechanisms will lead to the development of more effective therapeutic targets. [source] Differential responses to NMDA receptor activation in rat hippocampal interneurons and pyramidal cells may underlie enhanced pyramidal cell vulnerabilityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2005E. Avignone Abstract Hippocampal interneurons are generally more resistant than pyramidal cells to excitotoxic insults. Because NMDA receptors play a crucial role in neurodegeneration, we have compared the response to exogenous NMDA in CA1 pyramidal cells and interneurons of the stratum oriens using combined whole-cell patch-clamp recording and ratiometric Ca2+ imaging. In voltage-clamp, current-clamp or in nominally Mg2+ -free medium, NMDA (10 µm; 3,5 min exposure in the presence of tetrodotoxin) induced a markedly larger inward current and Ca2+ rise in pyramidal cells than in interneurons. Pyramidal cells also showed a more pronounced voltage dependence in their response to NMDA. We hypothesized that this enhanced response to NMDA receptor activation in pyramidal cells could underlie their increased vulnerability to excitotoxicity. Using loss of dye as an indicator of degenerative membrane disruption, interneurons tolerated continuous exposure to a high concentration of NMDA (30 µm) for longer periods than pyramidal cells. This acute neurodegeneration in pyramidal cells was independent of intracellular Ca2+, because high intracellular BAPTA (20 mm) did not prolong survival time. Thus, a plausible explanation for the enhanced sensitivity of pyramidal neurons to excitotoxic insults associated with cerebral ischemia is their greater response to NMDA receptor activation, which may reflect differences in NMDA receptor expression and/or subunit composition. [source] Fractalkine reduces N -methyl- d -aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2004Kumaran Deiva Abstract Our purpose was to investigate in human neurons the neuroprotective pathways induced by Fractalkine (FKN) against glutamate receptor-induced excitotoxicity. CX3CR1 and FKN are expressed constitutively in the tested human embryonic primary neurons and SK-N-SH, a human neuroblastoma cell line. Microfluorometry assay demonstrated that CX3CR1 was functional in 44% of primary neurons and in 70% of SK-N-SH. Fractalkine induced ERK1/2 phosphorylation within 1 min and Akt phosphorylation after 10 min, and both phosphorylation decreased after 20 min. No p38 and SAPK/JNK activation was observed after FKN treatment. Application of FKN triggered a 53% reduction of the NMDA-induced neuronal calcium influx, which was insensitive to pertussis toxin and LY294002 an inhibitor of Akt pathway, but abolished by PD98059, an ERK1/2 pathway inhibitor. Moreover, FKN significantly reduced neuronal NMDA-induced apoptosis, which was pertussis toxin insensitive and abolished in presence of PD98059 and LY294002. In conclusion, FKN protected human neurons from NMDA-mediated excitotoxicity in at least two ways with different kinetics: (i) an early ERK1/2 activation which reduced NMDA-mediated calcium flux; and (ii), a late Akt activation associated with the previously induced ERK1/2 activation. [source] Expression of functional NR1/NR2B-type NMDA receptors in neuronally differentiated SK-N-SH human cell lineEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2002Marina Pizzi Abstract The present study demonstrates that human SK-N-SH neuroblastoma cells, differentiated by retinoic acid (RA), express functional NMDA receptors and become vulnerable to glutamate toxicity. During exposure to RA, SK-N-SH cells switched from non-neuronal to neuronal phenotype by showing antigenic changes typical of postmitotic neurons together with markers specific for cholinergic cells. Neuronally differentiated cells displayed positive immunoreactivity to the vesicular acetylcholine transporter and active acetylcholine release in response to depolarizing stimuli. The differentiation correlated with the expression of NMDA receptors. RT-PCR and immunoblotting analysis identified NMDA receptor subunits NR1 and NR2B, in RA-differentiated cultures. The NR1 protein immunolocalized to the neuronal cell population and assembled with the NR2B subunit to form functional N -methyl- d -aspartate (NMDA) receptors. Glutamate or NMDA application, concentration-dependently increased the intracellular Ca2+ levels and acetylcholine release in differentiated cultures, but not in undifferentiated SK-N-SH cells. Moreover, differentiated cultures became vulnerable to NMDA receptor-mediated excitotoxicity. The glutamate effects were enhanced by glycine application and were prevented by the NMDA receptor blocker MK 801, as well as by the NR2B selective antagonist ifenprodil. These data suggest that SK-N-SH cells differentiated by brief treatment with RA may represent an unlimited source of neuron-like cells suitable for studying molecular events associated with activation of human NR1/NR2B receptors. [source] Dopamine transporter knock-out mice are hypersensitive to 3-nitropropionic acid-induced striatal damageEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2002Pierre-O. Abstract Evidence suggests that dopamine is involved in the modulation of striatal excitotoxic processes. To further investigate this issue, we studied the effects of systemic ,low-dose' (total dose, 340 mg/kg in 7 days) 3-nitropropionic acid (3-NP) intoxication in dopamine transporter knock-out mice (DAT,/,) compared to wildtype (DAT+/+) mice. Systemic ,low-dose' 3-NP induced a significant impairment in a rotarod task only in DAT,/, mice. Histopathology also demonstrated a significant reduction of the striatal volume (,7%, P < 0.05), neuronal density (,12.5%, P < 0.001) and absolute number estimates of striatal neurons (,11.5%, P < 0.001) in DAT,/, compared to DAT+/+ mice, with increased glial activation, independent of the degree of succinate dehydrogenase inhibition. These findings strengthen the hypothesis for dopamine modulation of excitotoxicity within the nigrostriatal system. [source] Glial-derived arginine, the nitric oxide precursor, protects neurons from NMDA-induced excitotoxicityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2001Gilbert Grima Abstract Excitotoxic neuronal cell death is characterized by an overactivation of glutamate receptors, in particular of the NMDA subtype, and the stimulation of the neuronal nitric oxide synthase (nNOS), which catalyses the formation of nitric oxide (NO) from l -arginine (L-Arg). At low L-Arg concentrations, nNOS generates NO and superoxide (O2,,), favouring the production of the toxin peroxynitrite (ONOO,). Here we report that NMDA application for five minutes in the absence of added L-Arg induces neuronal cell death, and that the presence of L-Arg during NMDA application prevents cell loss by blocking O2,, and ONOO, formation and by inhibiting mitochondrial depolarization. Because L-Arg is transferred from glial cells to neurons upon activation of glial glutamate receptors, we hypothesized that glial cells play an important modulator role in excitotoxicity by releasing L-Arg. Indeed, as we further show, glial-derived L-Arg inhibits NMDA-induced toxic radical formation, mitochondrial dysfunction and cell death. Glial cells thus may protect neurons from excitotoxicity by supplying L-Arg. This potential neuroprotective mechanism may lead to an alternative approach for the treatment of neurodegenerative diseases involving excitotoxic processes, such as ischemia. [source] Antisense knockdown of the glial glutamate transporter GLT-1 exacerbates hippocampal neuronal damage following traumatic injury to rat brainEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2001Vemuganti L. Raghavendra Rao Abstract Traumatic injury to rat brain induced by controlled cortical impact (CCI) results in chronic neuronal death in the hippocampus. In the normal brain, glutamate transporters actively clear the glutamate released synaptically to prevent receptor overactivation and excitotoxicity. Glutamate transporter 1 (GLT-1) is the most abundant and active glutamate transporter, which mediates the bulk of glutamate uptake. CCI injury significantly decreased GLT-1 mRNA (by 49,66%, P < 0.05) and protein (by 29,44%, P < 0.05) levels in the ipsilateral hippocampus, compared with either the respective contralateral hippocampus or the sham-operated control, 24,72 h after the injury. CCI injury in rats infused with GLT-1 antisense oligodeoxynucleotides (ODNs) exacerbated the hippocampal neuronal death and mortality, compared with the GLT-1 sense/random ODN-infused controls. At 7 days after the injury, hippocampal neuronal numbers were significantly lower in the CA1 (reduced by 32%, P < 0.05), CA2 (by 45%, P < 0.01), CA3 (by 68%, P < 0.01) and dentate gyrus (by 31%, P < 0.05) in GLT-1 antisense ODN-infused rats, compared with the GLT-1 sense/random ODN-infused controls. This study suggested a role for GLT-1 dysfunction in promoting the hippocampal neuronal death after traumatic brain injury. [source] Reducing conditions significantly attenuate the neuroprotective efficacy of competitive, but not other NMDA receptor antagonists in vitroEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2000Ashley K. Pringle Abstract Inappropriate activation of NMDA receptors during a period of cerebral ischaemia is a crucial event in the pathway leading to neuronal degeneration. However, significant research has failed to deliver a clinically active NMDA receptor antagonist, and competitive NMDA antagonists are ineffective in many experimental models of ischaemia. The NMDA receptor itself has a number of modulatory sites which may affect receptor function under ischaemic conditions. Using rat organotypic hippocampal slice cultures we have investigated whether the redox modulatory site affects the neuroprotective efficacy of NMDA receptor antagonists against excitotoxicity and experimental ischaemia (OGD). NMDA toxicity was significantly enhanced in cultures pretreated with a reducing agent. The noncompetitive antagonist MK-801 and a glycine-site blocker were equally neuroprotective in both normal and reduced conditions, but there was a significant rightward shift in the dose,response curves of the competitive antagonists APV and CPP and the uncompetitive antagonist memantine. OGD produced neuronal damage predominantly in the CA1 region, which was prevented by MK-801 and memantine, but not by APV or CPP. Inclusion of an oxidizing agent during the period of OGD had no effect alone, but significantly enhanced the neuroprotective potency of the competitive antagonists. These data clearly demonstrate that chemical reduction of the redox modulatory site of the NMDA receptor decreases the ability of competitive antagonists to block NMDA receptor-mediated neuronal damage, and that the reducing conditions which occur during simulated ischaemia are sufficient to produce a similar effect. This may have important implications for the design of future neuroprotective agents. [source] Oxidative and excitotoxic insults exert differential effects on spinal motoneurons and astrocytic glutamate transporters: Implications for the role of astrogliosis in amyotrophic lateral sclerosisGLIA, Issue 2 2009Chrissandra J. Zagami Abstract In amyotrophic lateral sclerosis (ALS) non-neuronal cells play key roles in disease etiology and loss of motoneurons via noncell-autonomous mechanisms. Reactive astrogliosis and dysfunctional transporters for L -glutamate [excitatory amino acid transporters, (EAATs)] are hallmarks of ALS pathology. Here, we describe mechanistic insights into ALS pathology involving EAAT-associated homeostasis in response to a destructive milieu, in which oxidative stress and excitotoxicity induce respectively astrogliosis and motoneuron injury. Using an in vitro neuronal-glial culture of embryonic mouse spinal cord, we demonstrate that EAAT activity was maintained initially, despite a loss of cellular viability induced by exposure to oxidative [3-morpholinosydnonimine chloride (SIN-1)] and excitotoxic [(S)-5-fluorowillardiine (FW)] conditions. This homeostatic response of EAAT function involved no change in the cell surface expression of EAAT1/2 at 0.5,4 h, but rather alterations in kinetic properties. Over this time-frame, EAAT1/2 both became more widespread across astrocytic arbors in concert with increased expression of glial fibrillary acidic protein (GFAP), although at 8,24 h there was gliotoxicity, especially with SIN-1 rather than FW. An opposite picture was found for motoneurons where FW, not SIN-1, produced early and extensive neuritic shrinkage and blebbing (,0.5 h) with somata loss from 2 h. We postulate that EAATs play an early homeostatic and protective role in the pathologic milieu. Moreover, the differential profiles of injury produced by oxidative and excitotoxic insults identify two distinct phases of injury which parallel important aspects of the pathology of ALS. © 2008 Wiley-Liss, Inc. [source] Calcium ions in neuronal degenerationIUBMB LIFE, Issue 9 2008Urszula Wojda Abstract Neuronal Ca2+ homeostasis and Ca2+ signaling regulate multiple neuronal functions, including synaptic transmission, plasticity, and cell survival. Therefore disturbances in Ca2+ homeostasis can affect the well-being of the neuron in different ways and to various degrees. Ca2+ homeostasis undergoes subtle dysregulation in the physiological ageing. Products of energy metabolism accumulating with age together with oxidative stress gradually impair Ca2+ homeostasis, making neurons more vulnerable to additional stress which, in turn, can lead to neuronal degeneration. Neurodegenerative diseases related to aging, such as Alzheimer's disease, Parkinson's disease, or Huntington's disease, develop slowly and are characterized by the positive feedback between Ca2+ dyshomeostasis and the aggregation of disease-related proteins such as amyloid beta, alfa-synuclein, or huntingtin. Ca2+ dyshomeostasis escalates with time eventually leading to neuronal loss. Ca2+ dyshomeostasis in these chronic pathologies comprises mitochondrial and endoplasmic reticulum dysfunction, Ca2+ buffering impairment, glutamate excitotoxicity and alterations in Ca2+ entry routes into neurons. Similar changes have been described in a group of multifactorial diseases not related to ageing, such as epilepsy, schizophrenia, amyotrophic lateral sclerosis, or glaucoma. Dysregulation of Ca2+ homeostasis caused by HIV infection or by sudden accidents, such as brain stroke or traumatic brain injury, leads to rapid neuronal death. The differences between the distinct types of Ca2+ dyshomeostasis underlying neuronal degeneration in various types of pathologies are not clear. Questions that should be addressed concern the sequence of pathogenic events in an affected neuron and the pattern of progressive degeneration in the brain itself. Moreover, elucidation of the selective vulnerability of various types of neurons affected in the diseases described here will require identification of differences in the types of Ca2+ homeostasis and signaling among these neurons. This information will be required for improved targeting of Ca2+ homeostasis and signaling components in future therapeutic strategies, since no effective treatment is currently available to prevent neuronal degeneration in any of the pathologies described here. © 2008 IUBMB IUBMB Life, 60(9): 575,590, 2008 [source] Nitric Oxide, Mitochondria, and Cell DeathIUBMB LIFE, Issue 3-5 2001Guy C. Brown Abstract NO or its derivatives (reactive nitrogen species: RNS) have three types of actions on mitochondria: 1) reversible inhibition of mitochondrial respiration at cytochrome oxidase by NO, and irreversible inhibition at multiple sites by RNS; 2) stimulation of mitochondrial production of superoxide, hydrogen peroxide, and peroxynitrite by NO; and 3) induction of mitochondrial permeability transition (MPT) by RNS. Similarly there are three main roles of mitochondria in NO-induced cell death: a) NO inhibition of respiration can induce necrosis (or excitotoxicity in neurons) and inhibit apoptosis if glycolysis is insufficient to compensate, b) RNS- or oxidant-induced signal transduction or DNA damage may activate the mitochondrial pathway to apoptosis, and c) RNS-induced MPT may induce apoptosis or necrosis. [source] GRAPE SEED PROANTHOCYANIDIN EXTRACT CHELATES IRON AND ATTENUATES THE TOXIC EFFECTS OF 6-HYDROXYDOPAMINE: IMPLICATIONS FOR PARKINSON'S DISEASEJOURNAL OF FOOD BIOCHEMISTRY, Issue 2 2010TZU-HUA WU ABSTRACT Proanthocyanidins are potent antioxidants associated with protection against diseases. We tested the reducing capacity, iron chelating activity, and anti-auto-oxidation ability of grape seed proanthocyanidin extract (GSPE). The mechanisms underlying GSPE attenuation of oxidative processes induced by 6-hydroxydopamine (6-OHDA), a neurotoxin used to induce Parkinson's disease, were investigated in cell-based systems. At high concentrations, GSPE (50 µg/µL) was a mild pro-oxidant in a Fenton-type reaction. GSPE (300 µg/mL) was as potent as 30 µM deferoxamine in its iron-chelating capacity, and as efficient as 5 mM ascorbic acid in delaying 6-OHDA auto-oxidation. In PC-12 cell cultures, 100 and 300 µg/mL GSPE significantly protected (P < 0.05) cells from 6-OHDA-induced (400 µM) toxicity. GSPE-induced cytoprotection is enhanced by a nitric oxide synthase inhibitor (NOSI), implying that the cytoprotective effect of GSPE does not require NOS activation. In conclusion, the iron-chelating activity of GSPE minimizes its pro-oxidant activity and delays 6-OHDA auto-oxidation to provide cytoprotection. PRACTICAL APPLICATIONS Parkinson's disease is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons. The recognized pharmacological strategies to prevent or treat Parkinson's disease include the minimization of oxidative stress, iron release and excitotoxicity resulting from excess nitric oxide formation. One of the best ways to delay or prevent the onset of the disease is to improve the biological antioxidant status by providing additional radical scavengers that are not pro-oxidants. The pro-oxidant activity, such as that of the antioxidant ascorbic acid, enhances radical cycling under certain conditions, and therefore may be detrimental. Grape seed proanthocyanidin extracts (GSPEs) are used as a dietary supplement in food products in several countries. Our current report provides evidence that GSPE has limited pro-oxidant activity, presumably because of its iron-chelating abilities, and protects cells from neurotoxic insults. GSPE may be effective as a dietary supplement for prophylactic use against the progressive neurodegeneration seen in Parkinson's disease. [source] The life, death, and replacement of oligodendrocytes in the adult CNSJOURNAL OF NEUROCHEMISTRY, Issue 1 2008Dana M. McTigue Abstract Oligodendrocytes (OLs) are mature glial cells that myelinate axons in the brain and spinal cord. As such, they are integral to functional and efficient neuronal signaling. The embryonic lineage and postnatal development of OLs have been well-studied and many features of the process have been described, including the origin, migration, proliferation, and differentiation of precursor cells. Less clear is the extent to which OLs and damaged/dysfunctional myelin are replaced following injury to the adult CNS. OLs and their precursors are very vulnerable to conditions common to CNS injury and disease sites, such as inflammation, oxidative stress, and elevated glutamate levels leading to excitotoxicity. Thus, these cells become dysfunctional or die in multiple pathologies, including Alzheimer's disease, spinal cord injury, Parkinson's disease, ischemia, and hypoxia. However, studies of certain conditions to date have detected spontaneous OL replacement. This review will summarize current information on adult OL progenitors, mechanisms that contribute to OL death, the consequences of their loss and the pathological conditions in which spontaneous oligodendrogenesis from endogenous precursors has been observed in the adult CNS. [source] Interleukin-1,: a bridge between inflammation and excitotoxicity?JOURNAL OF NEUROCHEMISTRY, Issue 1 2008Birgit Fogal Abstract Interleukin-1 (IL-1) is a proinflammatory cytokine released by many cell types that acts in both an autocrine and/or paracrine fashion. While IL-1 is best described as an important mediator of the peripheral immune response during infection and inflammation, increasing evidence implicates IL-1 signaling in the pathogenesis of several neurological disorders. The biochemical pathway(s) by which this cytokine contributes to brain injury remain(s) largely unidentified. Herein, we review the evidence that demonstrates the contribution of IL-1, to the pathogenesis of both acute and chronic neurological disorders. Further, we highlight data that leads us to propose IL-1, as the missing mechanistic link between a potential beneficial inflammatory response and detrimental glutamate excitotoxicity. [source] The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitisJOURNAL OF NEUROCHEMISTRY, Issue 4 2008Natalie A. Prow Abstract Astrocytes remove glutamate from the synaptic cleft via specific transporters, and impaired glutamate reuptake may promote excitotoxic neuronal injury. In a model of viral encephalomyelitis caused by neuroadapted Sindbis virus (NSV), mice develop acute paralysis and spinal motor neuron degeneration inhibited by the AMPA receptor antagonist, NBQX. To investigate disrupted glutamate homeostasis in the spinal cord, expression of the main astroglial glutamate transporter, GLT-1, was examined. GLT-1 levels declined in the spinal cord during acute infection while GFAP expression was preserved. There was simultaneous production of inflammatory cytokines at this site, and susceptible animals treated with drugs that blocked IL-1, release also limited paralysis and prevented the loss of GLT-1 expression. Conversely, infection of resistant mice that develop mild paralysis following NSV challenge showed higher baseline GLT-1 levels as well as lower production of IL-1, and relatively preserved GLT-1 expression in the spinal cord compared to susceptible hosts. Finally, spinal cord GLT-1 expression was largely maintained following infection of IL-1,-deficient animals. Together, these data show that IL-1, inhibits astrocyte glutamate transport in the spinal cord during viral encephalomyelitis. They provide one of the strongest in vivo links between innate immune responses and the development of excitotoxicity demonstrated to date. [source] Preferential vulnerability of mesencephalic dopamine neurons to glutamate transporter dysfunctionJOURNAL OF NEUROCHEMISTRY, Issue 2 2008Imane Nafia Abstract Nigral depletion of the main brain antioxidant GSH is the earliest biochemical event involved in Parkinson's disease pathogenesis. Its causes are completely unknown but increasing number of evidence suggests that glutamate transporters [excitatory amino acid transporters (EAATs)] are the main route by which GSH precursors may enter the cell. In this study, we report that dopamine (DA) neurons, which express the excitatory amino acid carrier 1, are preferentially affected by EAAT dysfunction when compared with non-DA neurons. In rat embryonic mesencephalic cultures, l -trans-pyrrolidine-2,4-dicarboxylate, a substrate inhibitor of EAATs, is directly and preferentially toxic for DA neurons by decreasing the availability of GSH precursors and lowering their resistance threshold to glutamate excitotoxicity through NMDA-receptors. In adult rat, acute intranigral injection of l -trans-pyrrolidine-2,4-dicarboxylate induces a large regionally selective and dose-dependent loss of DA neurons and ,-synuclein aggregate formation. These data highlight for the first time the importance of excitatory amino acid carrier 1 function for the maintenance of antioxidant defense in DA neurons and suggest its dysfunction as a candidate mechanism for the selective death of DA neurons such as occurring in Parkinson's disease. [source] Hypoxic damage to the periventricular white matter in neonatal brain: role of vascular endothelial growth factor, nitric oxide and excitotoxicityJOURNAL OF NEUROCHEMISTRY, Issue 4 2006Charanjit Kaur Abstract The present study examined factors that may be involved in the development of hypoxic periventricular white matter damage in the neonatal brain. Wistar rats (1-day old) were subjected to hypoxia and the periventricular white matter (corpus callosum) was examined for the mRNA and protein expression of hypoxia-inducible factor-1, (HIF-1,), endothelial, neuronal and inducible nitric oxide synthase (eNOS, nNOS and iNOS), vascular endothelial growth factor (VEGF) and N-methyl-D-aspartate receptor subunit 1 (NMDAR1) between 3 h and 14 days after hypoxic exposure by real-time RT-PCR, western blotting and immunohistochemistry. Up-regulated mRNA and protein expression of HIF-1,, VEGF, NMDAR1, eNOS, nNOS and iNOS in corpus callosum was observed in response to hypoxia. NMDAR1 and iNOS expression was found in the activated microglial cells, whereas VEGF was localized to astrocytes. An enzyme immunoassay showed that the VEGF concentration in corpus callosum was significantly higher up to 7 days after hypoxic exposure. NO levels, measured by colorimetric assay, were also significantly higher in hypoxic rats up to 14 days after hypoxic exposure as compared with the controls. A large number of axons undergoing degeneration were observed between 3 h and 7 days after the hypoxic exposure at electron-microscopic level. Our findings point towards the involvement of excitotoxicity, VEGF and NO in periventricular white matter damage in response to hypoxia. [source] Loss of metabotropic glutamate receptor-mediated regulation of glutamate transport in chemically activated astrocytes in a rat model of amyotrophic lateral sclerosisJOURNAL OF NEUROCHEMISTRY, Issue 3 2006Céline Vermeiren Abstract Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a selective loss of motor neurones accompanied by intense gliosis in lesioned areas of the brain and spinal cord. Glutamate-mediated excitotoxicity resulting from impaired astroglial uptake constitutes one of the current pathophysiological hypotheses explaining the progression of the disease. In this study, we examined the regulation of glutamate transporters by type 5 metabotropic glutamate receptor (mGluR5) in activated astrocytes derived from transgenic rats carrying an ALS-related mutated human superoxide dismutase 1 (hSOD1G93A) transgene. Cells from transgenic animals and wild-type littermates showed similar expression of glutamate,aspartate transporter and glutamate transporter 1 (GLT-1) after in vitro activation, whereas cells carrying the hSOD1 mutation showed a three-fold higher expression of functional mGluR5, as observed in the spinal cord of end-stage animals. In cells from wild-type animals, (S)-3,5-dihydroxyphenylglycine (DHPG) caused an immediate protein kinase C (PKC)-dependent up-regulation of aspartate uptake that reflected the activation of GLT-1. Although this effect was mimicked in both cultures by direct activation of PKC using phorbol myristate acetate, DHPG failed to up-regulate aspartate uptake in cells derived from the transgenic rats. The failure of activated mGluR5 to increase glutamate uptake in astrocytes derived from this animal model of ALS supports the theory of glutamate excitotoxicity in the pathogenesis of the disease. [source] Neuroprotection by stem cell factor in rat cortical neurons involves AKT and NF,BJOURNAL OF NEUROCHEMISTRY, Issue 1 2005Krishnan M. Dhandapani Abstract Stem cell factor (SCF) is a highly expressed cytokine in the central nervous system. In the present study, we demonstrate a neuroprotective role for SCF and its tyrosine kinase receptor, c-kit, against camptothecin-induced apoptosis and glutamate excitotoxicity in rat cortical neurons. This protection was blocked by pharmacological or molecular inhibition of either the MEK/ERK or PI3K/Akt signaling pathways. The importance of these pathways was further confirmed by the activation of both ERK, in a MEK-dependent manner, and Akt, via PI3K. Activation of Akt increased the binding of the p50 and p65 subunits of NF,B, which was also important for neuroprotection. Akt inhibition prevented NF,B binding, suggesting a role for Akt in SCF-induced NF,B. Pharmacological inhibition of NF,B or dominant negative I,B also prevented neuroprotection by SCF. SCF up-regulated the anti-apoptotic genes, bcl-2 and bcl-xL in an NF,B-dependent manner. Together, these findings demonstrate a neuroprotective role for SCF in cortical neurons, an effect that was mediated by Akt and ERK, as well as NF,B-mediated gene transcription. SCF represents a novel therapeutic target in the treatment of neurodegenerative disease. [source] Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neuronesJOURNAL OF NEUROCHEMISTRY, Issue 6 2005Julian Bösel Abstract Statins [3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors] exert cholesterol-independent pleiotropic effects that include anti-thrombotic, anti-inflammatory, and anti-oxidative properties. Here, we examined direct protective effects of atorvastatin on neurones in different cell damage models in vitro. Primary cortical neurones were pre-treated with atorvastatin and then exposed to (i) glutamate, (ii) oxygen,glucose deprivation or (iii) several apoptosis-inducing compounds. Atorvastatin significantly protected from glutamate-induced excitotoxicity as evidenced by propidium iodide staining, nuclear morphology, release of lactate dehydrogenase, and mitochondrial tetrazolium metabolism, but not from oxygen,glucose deprivation or apoptotic cell death. This anti-excitototoxic effect was evident with 2,4 days pre-treatment but not with daily administration or shorter-term pre-treatment. The protective properties occurred independently of 3-hydroxy-3-methylglutaryl-CoA reductase inhibition because co-treatment with mevalonate or other isoprenoids did not reverse or attenuate neuroprotection. Atorvastatin attenuated the glutamate-induced increase of intracellular calcium, which was associated with a modulation of NMDA receptor function. Taken together, atorvastatin exerts specific anti-excitotoxic effects independent of 3-hydroxy-3-methylglutaryl-CoA reductase inhibition, which has potential therapeutic implications. [source] Increased survival and neuroprotective effects of BN82451 in a transgenic mouse model of Huntington's diseaseJOURNAL OF NEUROCHEMISTRY, Issue 1 2003Peter Klivenyi Abstract There is substantial evidence that excitotoxicity and oxidative damage may contribute to Huntington's disease (HD) pathogenesis. We examined whether the novel anti-oxidant compound BN82451 exerts neuroprotective effects in the R6/2 transgenic mouse model of HD. Oral administration of BN82451 significantly improved motor performance and improved survival by 15%. Oral administration of BN82451 significantly reduced gross brain atrophy, neuronal atrophy and the number of neuronal intranuclear inclusions at 90 days of age. These findings provide evidence that novel anti-oxidants such as BN82451 may be useful for treating HD. [source] In depolarized and glucose-deprived neurons, Na+ influx reverses plasmalemmal K+ -dependent and K+ -independent Na+/Ca2+ exchangers and contributes to NMDA excitotoxicityJOURNAL OF NEUROCHEMISTRY, Issue 6 2002Aneta Czy Abstract Cerebellar granule cells (CGCs) express K+ -dependent (NCKX) and K+ -independent (NCX) plasmalemmal Na+/Ca2+ exchangers which, under plasma membrane-depolarizing conditions and high cytosolic [Na+], may reverse and mediate potentially toxic Ca2+ influx. To examine this possibility, we inhibited NCX or NCKX with KB-R7943 or K+ -free medium, respectively, and studied how gramicidin affects cytosolic [Ca2+] and 45Ca2+ accumulation. Gramicidin forms pores permeable to alkali cations but not Ca2+. Therefore, gramicidin-induced Ca2+ influx is indirect; it results from fluxes of monovalent cations. In the presence of Na+, but not Li+ or Cs+, gramicidin induced Ca2+ influx that was inhibited by simultaneous application of KB-R7943 and K+ -free medium. The data indicate that gramicidin-induced Na+ influx reverses NCX and NCKX. To test the role of NCX and/or NCKX in excitotoxicity, we studied how NMDA affects the viability of glucose-deprived and depolarized CGCs. To assure depolarization of the plasma membrane, we inhibited Na+,K+ -ATPase with ouabain. Although inhibition of NCX or NCKX reversal failed to significantly limit 45Ca2+ accumulation and excitotoxicity, simultaneously inhibiting NCX and NCKX reversal was neuroprotective and significantly decreased NMDA-induced 45Ca2+ accumulation. Our data suggest that NMDA-induced Na+ influx reverses NCX and NCKX and leads to the death of depolarized and glucose-deprived neurons. [source] c-DNA Microarray to determine molecular events in neurodegeneration and neuroprotectionJOURNAL OF NEUROCHEMISTRY, Issue 2002M. B. H. Youdim Cell death in CNS involves complex processes, many of which have not been identified biochemically. At the present biochemical techniques cannot adequately establish these. However, the advent of cDNA microarray or microchips, in which the expression of thousands of genes can be measured at once to give a global assessment in disease pathology, its progress or animal models, has simplified this. We have employed this technique to study the mechanism of neurotoxicity of MPTP and 6-hydroxydoapmine induced in neuronally derived cells in culture, in the animal models of Parkinson's disease and neuroprotection initiated by monoamine oxidase B inhibitor, rasagiline; iron chelators, R-apomorphine and EGCG and other neuroprotective drugs. Our studies have clearly indicated that MPTP induced early gene expression, prior to cell death (first 24 h), are prerequirement for 51 late gene expression changes implicated at the time of neuronal death. The latter genes include those involved in iron metabolism, oxidative stress, inflammatory processes, glutaminergic excitotoxicity, nitric oxide, growth factors, transcription factors, cell cycle, intermediatory metabolism and other gene previously not identified. The expressions of many of the latter genes, also identified by in situ hybridization, are prevented when the animals are pretreated with the above neuroprotective drugs. These studies have clearly shown that neurodegeneratrion is a complex cascades of ,domino' effect. Thus a single neuroprotective drug treatment may not be adequate to prevent it, but, that a cocktail of drugs might. [source] |