Home About us Contact | |||
Excitatory Neurotransmitter (excitatory + neurotransmitter)
Kinds of Excitatory Neurotransmitter Terms modified by Excitatory Neurotransmitter Selected AbstractsPhysiological requirement for the glutamate transporter dEAAT1 at the adult Drosophila neuromuscular junctionDEVELOPMENTAL NEUROBIOLOGY, Issue 10 2006Thomas Rival Abstract L -Glutamate is the major excitatory neurotransmitter in the mammalian brain. Specific proteins, the Na+/K+ -dependent high affinity excitatory amino acid transporters (EAATs), are involved in the extracellular clearance and recycling of this amino acid. Type I synapses of the Drosophila neuromuscular junction (NMJ) similarly use L -glutamate as an excitatory transmitter. However, the localization and function of the only high-affinity glutamate reuptake transporter in Drosophila, dEAAT1, at the NMJ was unknown. Using a specific antibody and transgenic strains, we observed that dEAAT1 is present at the adult, but surprisingly not at embryonic and larval NMJ, suggesting a physiological maturation of the junction during metamorphosis. We found that dEAAT1 is not localized in motor neurons but in glial extensions that closely follow motor axons to the adult NMJ. Inactivation of the dEAAT1 gene by RNA interference generated viable adult flies that were able to walk but were flight-defective. Electrophysiological recordings of the thoracic dorso-lateral NMJ were performed in adult dEAAT1-deficient flies. The lack of dEAAT1 prolonged the duration of the individual responses to motor nerve stimulation and this effect was progressively increased during physiological trains of stimulations. Therefore, glutamate reuptake by glial cells is required to ensure normal activity of the Drosophila NMJ, but only in adult flies. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Ketosis and brain handling of glutamate, glutamine, and GABAEPILEPSIA, Issue 2008Marc Yudkoff Summary We hypothesize that one mechanism of the anti-epileptic effect of the ketogenic diet is to alter brain handling of glutamate. According to this formulation, in ketotic brain astrocyte metabolism is more active, resulting in enhanced conversion of glutamate to glutamine. This allows for: (a) more efficient removal of glutamate, the most important excitatory neurotransmitter; and (b) more efficient conversion of glutamine to GABA, the major inhibitory neurotransmitter. [source] Role of the GLT-1 subtype of glutamate transporter in glutamate homeostasis: the GLT-1-preferring inhibitor WAY-855 produces marginal neurotoxicity in the rat hippocampusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2005Julie V. Selkirk Abstract Glutamate is the major excitatory neurotransmitter in the central nervous system and is tightly regulated by cell surface transporters to avoid increases in concentration and associated neurotoxicity. Selective blockers of glutamate transporter subtypes are sparse and so knock-out animals and antisense techniques have been used to study their specific roles. Here we used WAY-855, a GLT-1-preferring blocker, to assess the role of GLT-1 in rat hippocampus. GLT-1 was the most abundant transporter in the hippocampus at the mRNA level. According to [3H]- l -glutamate uptake data, GLT-1 was responsible for approximately 80% of the GLAST-, GLT-1-, and EAAC1-mediated uptake that occurs within dissociated hippocampal tissue, yet when this transporter was preferentially blocked for 120 h with WAY-855 (100 µm), no significant neurotoxicity was observed in hippocampal slices. This is in stark contrast to results obtained with TBOA, a broad-spectrum transport blocker, which, at concentrations that caused a similar inhibition of glutamate uptake (10 and 30 µm), caused substantial neuronal death when exposed to the slices for 24 h or longer. Likewise, WAY-855, did not significantly exacerbate neurotoxicity associated with simulated ischemia, whereas TBOA did. Finally, intrahippocampal microinjection of WAY-855 (200 and 300 nmol) in vivo resulted in marginal damage compared with TBOA (20 and 200 nmol), which killed the majority of both CA1,4 pyramidal cells and dentate gyrus granule cells. These results indicate that selective inhibition of GLT-1 is insufficient to provoke glutamate build-up, leading to NMDA receptor-mediated neurotoxic effects, and suggest a prominent role of GLAST and/or EAAC1 in extracellular glutamate maintenance. [source] Glutamate and its role in psychiatric illnessHUMAN PSYCHOPHARMACOLOGY: CLINICAL AND EXPERIMENTAL, Issue 2 2001Brendan Belsham Abstract Glutamate, a dicarboxylic amino acid, is the most abundantly active neurotransmitter in the mammalian brain; it is also the principal excitatory neurotransmitter in the cerebral cortex. As our knowledge of this neurotransmitter deepens, it is increasingly being implicated in the pathophysiology of mental illness. This review begins by examining the physiology of glutamate and its receptors. Its role in memory, movement, perception and neuronal development is discussed. The development of the glutamate hypothesis of schizophrenia is traced, and the emerging lines of evidence for attenuated function of the N -methyl- D -aspartate receptor in schizophrenia are examined. For ease of discussion, these are divided into pharmacological, post-mortem, imaging, platelet and genetic studies. Interactions between glutamate and other neurotransmitters are discussed, as are possible mechanisms by which such altered receptor activity might result in the clinical expression of schizophrenia. The possible role of glutamate in major depression and bipolar disorder is explored. The review concludes by highlighting the importance of avoiding a reductionist approach to the pathophysiology of any mental illness. Copyright © 2001 John Wiley & Sons, Ltd. [source] Glutamate and the glutamate receptor system: a target for drug actionINTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, Issue S1 2003Stefan Bleich Abstract Glutamate is the most important excitatory neurotransmitter in the central nervous system. In the process, glutamate fulfills numerous physiological functions, but also plays an important role in the pathophysiology of different neurological and psychiatric diseases, especially when an imbalance in glutamatergic neurotransmission occurs. Under certain conditions, glutamate has a toxic action resulting from an activation of specific glutamate receptors, which leads to acute or chronic death of nerve cells. Such mechanisms are currently under discussion in acute neuronal death within the context of hypoxia, ischaemia and traumas, as well as in chronic neurodegenerative or neurometabolic diseases, idiopathic parkinsonian syndrome, Alzheimer's dementia and Huntington's disease. It is hoped that glutamate antagonists will lead to novel therapies for these diseases, whereby the further development of glutamate antagonists for blocking disease-specific subtypes of glutamate receptors may be of major importance in the future. Copyright © 2003 John Wiley & Sons, Ltd. [source] Effects of the paratemnus elongatus pseudoscorpion venom in the uptake and binding of the L -glutamate and GABA from rat cerebral cortexJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 1 2006Wagner Ferreira dos Santos Abstract L -Glu is the most important and widespread excitatory neurotransmitter of the vertebrates. Four types of receptors for L -glu have been described. This neurotransmitter modulates several neuronal processes, and its dysfunction causes chronic and acute diseases. L -Glu action is terminated by five distinct transporters. Antagonists for these receptors and modulators of these transporters have anticonvulsant and neuroprotective potentials, as observed with the acylpoliamines and peptides isolated from spiders, solitary and social wasp venoms. On the other hand, the major inhibitory neurotransmitter in mammalian nervous tissue is the GABA. Drugs that enhance GABA neurotransmission comprise effective approaches to protecting the brain against neuronal injury. Is this study, we demonstrate for the first time the inhibition of the [3H]L -glu binding to its specific sites in synaptosomal membranes from rat cerebral cortex, produced by 0.027 U of Paratemnus elongatus venom (EC50). The venom of P. elongatus changes Km and Vmax into the high affinity uptake of the L -glu and decreases Km and Vmax into the parameters of the GABA uptake from rat synaptosomes. This leads us to speculate on the possible presence of selective and specific compounds in this venom that act in L -glu and GABA dynamics, and therefore, that can serve as tools and new drug models for understanding these neurotransmissions. © 2006 Wiley Periodicals, Inc. J Biochem Mol Toxicol 20:27,34, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20113 [source] The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1JOURNAL OF NEUROCHEMISTRY, Issue 2 2010Renae M. Ryan J. Neurochem. (2010) 114, 565,575. Abstract Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and extracellular glutamate levels are controlled by a family of transporters known as excitatory amino acid transporters (EAATs). The EAATs transport glutamate and aspartate with similar micromolar affinities and this transport is coupled to the movement of Na+, K+, and H+. The crystal structure of a prokaryotic homologue of the EAATs, aspartate transporter from Pyrococcus horokoshii (GltPh), has yielded important insights into the architecture of this transporter family. GltPh is a Na+ -dependent transporter that has significantly higher affinity for aspartate over glutamate and is not coupled to H+ or K+. The highly conserved carboxy-terminal domains of the EAATs and GltPh contain the substrate and ion binding sites, however, there are a couple of striking differences in this region that we have investigated to better understand the transport mechanism. An arginine residue is in close proximity to the substrate binding site of both GltPh and the EAATs, but is located in transmembrane domain (TM) 8 in the EAATs and hairpin loop 1 (HP1) of GltPh. Here we report that the position of this arginine residue can explain some of the functional differences observed between the EAATs and GltPh. Moving the arginine residue from TM8 to HP1 in EAAT1 results in a transporter that has significantly increased affinity for both glutamate and aspartate and is K+ independent. Conversely, moving the arginine residue from HP1 to TM8 in GltPh results in a transporter that has reduced affinity for aspartate. [source] Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cellsJOURNAL OF NEUROCHEMISTRY, Issue 5 2007Xingshun Xu Abstract Glutamate, a major excitatory neurotransmitter in the CNS, plays a critical role in neurological disorders such as stroke and Parkinson's disease. Recent studies have suggested that glutamate excess can result in a form of cell death called glutamate-induced oxytosis. In this study, we explore the protective effects of necrostatin-1 (Nec-1), an inhibitor of necroptosis, on glutamate-induced oxytosis. We show that Nec-1 inhibits glutamate-induced oxytosis in HT-22 cells through a mechanism that involves an increase in cellular glutathione (GSH) levels as well as a reduction in reactive oxygen species production. However, Nec-1 had no protective effect on free radical-induced cell death caused by hydrogen peroxide or menadione, which suggests that Nec-1 has no antioxidant effects. Interestingly, the protective effect of Nec-1 was still observed when cellular GSH was depleted by buthionine sulfoximine, a specific and irreversible inhibitor of glutamylcysteine synthetase. Our study further demonstrates that Nec-1 significantly blocks the nuclear translocation of apoptosis-inducing factor (a marker of caspase-independent programmed cell death) and inhibits the integration of Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (a pro-death member of the Bcl-2 family) into the mitochondrial membrane. Taken together, these results demonstrate for the first time that Nec-1 prevents glutamate-induced oxytosis in HT-22 cells through GSH related as well as apoptosis-inducing factor and Bcl-2/adenovirus E1B 19 kDa-interacting protein 3-related pathways. [source] Glutamate activation of Oct-2 in cultured chick Bergmann glia cells: Involvement of NF,BJOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2005J. Alfredo Méndez Abstract Glutamate, the major excitatory neurotransmitter in the central nervous system, is critically involved in gene expression regulation at the transcriptional and translational levels. Its activity through ionotropic as well as metabotropic receptors modifies the protein repertoire in neurons and glial cells. In avian cerebellar Bergmann glia cells, glutamate receptors trigger a diverse array of signaling cascades that include activity-dependent transcription factors such as the activator protein-1, the cAMP response-element binding protein, and Oct-2. We analyze the upstream regulatory elements involved in Oct-2 activation. Our results demonstrate that Ca2+ influx, protein kinase C, phosphatidylinositol-3 kinase, Src, and nuclear factor (NF),B are involved in this signaling pathway. Our findings link ,-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor activation to a negative phase of chkbp gene regulation, controlled by NF,B. © 2005 Wiley-Liss, Inc. [source] Subtype selective kainic acid receptor agonists: Discovery and approaches to rational designMEDICINAL RESEARCH REVIEWS, Issue 1 2009Lennart Bunch Abstract (S)-Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system, activating the plethora of glutamate receptors (GluRs). In broad lines, the GluRs are divided into two major classes: the ionotropic Glu receptors (iGluRs) and the metabotropic Glu receptors (mGluRs). Within the iGluRs, five subtypes (KA1, KA2, iGluR5-7) show high affinity and express full agonist activity upon binding of the naturally occurring amino acid kainic acid (KA). Thus these receptors have been named the KA receptors. This review describes all,to our knowledge,published KA receptor agonists. In total, over 100 compounds are described by means of chemical structure and available pharmacological data. With this perspective review, it is our intention to ignite and stimulate inspiration for future design and synthesis of novel subtype selective KA receptor agonists. © 2008 Wiley Periodicals, Inc. Med Res Rev, 29, No. 1, 3,28, 2009 [source] Competitive AMPA receptor antagonistsMEDICINAL RESEARCH REVIEWS, Issue 2 2007Daniela Catarzi Abstract Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) where it is involved in the physiological regulation of different processes. It has been well established that excessive endogenous Glu is associated with many acute and chronic neurodegenerative disorders such as cerebral ischaemia, epilepsy, amiotrophic lateral sclerosis, Parkinson's, and Alzheimer's disease. These data have consequently added great impetus to the research in this field. In fact, many Glu receptor antagonists acting at the N -methyl- D -aspartic acid (NMDA), 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA), and/or kainic acid (KA) receptors have been developed as research tools and potential therapeutic agents. Ligands showing competitive antagonistic action at the AMPA type of Glu receptors were first reported in 1988, and the systemically active 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo[f]quinoxaline (NBQX) was first shown to have useful therapeutic effects in animal models of neurological disease in 1990. Since then, the quinoxaline template has represented the backbone of various competitive AMPA receptor antagonists belonging to different classes which had been developed in order to increase potency, selectivity and water solubility, but also to prolong the "in vivo" action. Compounds that present better pharmacokinetic properties and less serious adverse effects with respect to the others previously developed are undergoing clinical evaluation. In the near future, the most important clinical application for the AMPA receptor antagonists will probably be as neuroprotectant in neurodegenerative diseases, such as epilepsy, for the treatment of patients not responding to current therapies. The present review reports the history of competitive AMPA receptor antagonists from 1988 up to today, providing a systematic coverage of both the open and patent literature. © 2006 Wiley Periodicals, Inc. [source] Docking and homology modeling explain inhibition of the human vesicular glutamate transportersPROTEIN SCIENCE, Issue 9 2007Jonas Almqvist Abstract As membrane transporter proteins, VGLUT1,3 mediate the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory neural cells. This function is crucial for exocytosis and the role of glutamate as the major excitatory neurotransmitter in the central nervous system. The three transporters, sharing 76% amino acid sequence identity in humans, are highly homologous but differ in regional expression in the brain. Although little is known regarding their three-dimensional structures, hydropathy analysis on these proteins predicts 12 transmembrane segments connected by loops, a topology similar to other members in the major facilitator superfamily, where VGLUT1,3 have been phylogenetically classified. In this work, we present a three-dimensional model for the human VGLUT1 protein based on its distant bacterial homolog in the same superfamily, the glycerol-3-phosphate transporter from Escherichia coli. This structural model, stable during molecular dynamics simulations in phospholipid bilayers solvated by water, reveals amino acid residues that face its pore and are likely to affect substrate translocation. Docking of VGLUT1 substrates to this pore localizes two different binding sites, to which inhibitors also bind with an overall trend in binding affinity that is in agreement with previously published experimental data. [source] AMPA-sst2 somatostatin receptor interaction in rat hypothalamus requires activation of nmda and/or metabotropic glutamate receptors and depends on intracellular calciumTHE JOURNAL OF PHYSIOLOGY, Issue 1 2003Stéphane Peineau Modulation of glutamatergic transmission by neuropeptides is an essential aspect of neuronal network activity. Activation of the hypothalamic somatostatin sst2 receptor subtype by octreotide decreases AMPA glutamate responses, indicating a central link between a neurohormonal and neuromodulatory peptide and the main hypothalamic fast excitatory neurotransmitter. In mediobasal hypothalamic slices, sst2 activation inhibits the AMPA component of glutamatergic synaptic responses but is ineffective when AMPA currents are pharmacologically isolated. In mediobasal hypothalamic cultures, the decrease of AMPA currents induced by octreotide requires a concomitant activation of sst2 receptors with either NMDA and/or metabotropic glutamate receptors. This modulation depends on changes in intracellular calcium concentration induced by calcium flux through NMDA receptors or calcium release from intracellular stores following metabotropic glutamate receptor activation. These results highlight an unusual regulatory mechanism in which the simultaneous activation of at least three different types of receptor is necessary to allow somatostatin-induced modulation of fast synaptic glutamatergic transmission in the hypothalamus. [source] Elevated insular glutamate in fibromyalgia is associated with experimental pain,ARTHRITIS & RHEUMATISM, Issue 10 2009Richard E. Harris Objective Central pain augmentation resulting from enhanced excitatory and/or decreased inhibitory neurotransmission is a proposed mechanism underlying the pathophysiology of functional pain syndromes such as fibromyalgia (FM). Multiple functional magnetic resonance imaging studies implicate the insula as a region of heightened neuronal activity in this condition. Since glutamate (Glu) is a major cortical excitatory neurotransmitter that functions in pain neurotransmission, we undertook this study to test our hypothesis that increased levels of insular Glu would be present in FM patients and that the concentration of this molecule would be correlated with pain report. Methods Nineteen FM patients and 14 age- and sex-matched pain-free controls underwent pressure pain testing and a proton magnetic resonance spectroscopy session in which the right anterior insula and right posterior insula were examined at rest. Results Compared with healthy controls, FM patients had significantly higher levels of Glu (mean ± SD 8.09 ± 0.72 arbitrary institutional units versus 6.86 ± 1.29 arbitrary institutional units; P = 0.009) and combined glutamine and Glu (i.e., Glx) (mean ± SD 12.38 ± 0.94 arbitrary institutional units versus 10.59 ± 1.48 arbitrary institutional units; P = 0.001) within the right posterior insula. No significant differences between groups were detected in any of the other major metabolites within this region (P > 0.05 for all comparisons), and no group differences were detected for any metabolite within the right anterior insula (P > 0.11 for all comparisons). Within the right posterior insula, higher levels of Glu and Glx were associated with lower pressure pain thresholds across both groups for medium pain (for Glu, r = ,0.43, P = 0.012; for Glx, r = ,0.50, P = 0.003). Conclusion Enhanced glutamatergic neurotransmission resulting from higher concentrations of Glu within the posterior insula may play a role in the pathophysiology of FM and other central pain augmentation syndromes. [source] Expression, purification, crystallization and preliminary X-ray analysis of the ligand-binding domain of metabotropic glutamate receptor 7ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 7 2007Takanori Muto Glutamate is the major excitatory neurotransmitter and its metabotropic glutamate receptor (mGluR) plays an important role in the central nervous system. The ligand-binding domain (LBD) of mGluR subtype 7 (mGluR7) was produced using the baculovirus expression system and purified from the culture medium. The purified protein was characterized by gel-filtration chromatography, SDS,PAGE and a ligand-binding assay. Crystals of mGluR7 LBD were grown at 293,K by the hanging-drop vapour-diffusion method. The crystals diffracted X-rays to 3.30,Å resolution using synchrotron radiation and belong to the trigonal space group P3121, with unit-cell parameters a = b = 92.4, c = 114.3,Å. Assuming the presence of one protomer per crystallographic asymmetric unit, the Matthews coefficient VM was calculated to be 2.5,Å3,Da,1 and the solvent content was 51%. [source] An ultrastructural study of cell death in the CA1 pyramidal field of the hippocapmus in rats submitted to transient global ischemia followed by reperfusionJOURNAL OF ANATOMY, Issue 5 2007Aline De Souza Pagnussat Abstract In the course of ischemia and reperfusion a disruption of release and uptake of excitatory neurotransmitters occurs. This excitotoxicity triggers delayed cell death, a process closely related to mitochondrial physiology and one that shows both apoptotic and necrotic features. The aim of the present study was to use electron microscopy to characterize the cell death of pyramidal cells from the CA1 field of the hippocampus after 10 min of transient global ischemia followed by short reperfusion periods. For this study 25 adult male Wistar rats were used, divided into six groups: 10 min of ischemia, 3, 6, 12 and 24 h of reperfusion and an untouched group. Transient forebrain ischemia was produced using the 4-vessel occlusion method. The pyramidal cells of the CA1 field from rat hippocampus submitted to ischemia exhibited intracellular alterations consistent with a process of degeneration, with varied intensities according to the reperfusion period and bearing both apoptotic and necrotic features. Gradual neuronal and glial modifications allowed for the classification of the degenerative process into three stages: initial, intermediate and final were found. With 3 and 6 h of reperfusion, slight and moderate morphological alterations were seen, such as organelle and cytoplasm edema. Within 12 h of reperfusion, there was an apparent recovery and more ,intact' cells could be identified, while 24 h after the event neuronal damage was more severe and cells with disrupted membranes and cell debris were identified. Necrotic-like neurons were found together with some apoptotic bodies with 24 h of reperfusion. Present results support the view that cell death in the CA1 field of rat hippocampus submitted to 10 min of global transient ischemia and early reperfusion times includes both apoptotic and necrotic features, a process referred to as parapoptosis. [source] Pre-synaptic BK channels selectively control glutamate versus GABA release from cortical and hippocampal nerve terminalsJOURNAL OF NEUROCHEMISTRY, Issue 2 2010Maria Martire J. Neurochem. (2010) 115, 411,422. Abstract In the present study, by means of genetic, biochemical, morphological, and electrophysiological approaches, the role of large-conductance voltage- and Ca2+ -dependent K+ channels (BK channels) in the release of excitatory and non-excitatory neurotransmitters at hippocampal and non-hippocampal sites has been investigated. The results obtained show that the pharmacological modulation of pre-synaptic BK channels selectively regulates [3H]d -aspartate release from cortical and hippocampal rat synaptosomes, but it fails to influence the release of excitatory neurotransmitters from cerebellar nerve endings or that of [3H]GABA, [3H]Noradrenaline, or [3H]Dopamine from any of the brain regions investigated. Confocal immunofluorescence experiments in hippocampal or cerebrocortical nerve terminals revealed that the main pore-forming BK , subunit was more abundantly expressed in glutamatergic (vGLUT1+) versus GABAergic (GAD65-67+) nerve terminals. Double patch recordings in monosynaptically connected hippocampal neurons in culture confirmed a preferential control exerted by BK channels on glutamate over GABA release. Altogether, the present results highlight a high degree of specificity in the regulation of the release of various neurotransmitters from distinct brain regions by BK channels, supporting the concept that BK channel modulators can be used to selectively limit excessive excitatory amino acid release, a major pathogenetic mechanism in several neuropsychiatric disorders. [source] The developing relationship between receptor-operated and store-operated calcium channels in smooth muscleBRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2002Ian McFadzean Contraction of smooth muscle is initiated, and to a lesser extent maintained, by a rise in the concentration of free calcium in the cell cytoplasm ([Ca2+]i). This activator calcium can originate from two intimately linked sources , the extracellular space and intracellular stores, most notably the sarcoplasmic reticulum. Smooth muscle contraction activated by excitatory neurotransmitters or hormones usually involves a combination of calcium release and calcium entry. The latter occurs through a variety of calcium permeable ion channels in the sarcolemma membrane. The best-characterized calcium entry pathway utilizes voltage-operated calcium channels (VOCCs). However, also present are several types of calcium-permeable channels which are non-voltage-gated, including the so-called receptor-operated calcium channels (ROCCs), activated by agonists acting on a range of G-protein-coupled receptors, and store-operated calcium channels (SOCCs), activated by depletion of the calcium stores within the sarcoplasmic reticulum. In this article we will review the electrophysiological, functional and pharmacological properties of ROCCs and SOCCs in smooth muscle and highlight emerging evidence that suggests that the two channel types may be closely related, being formed from proteins of the Transient Receptor Potential Channel (TRPC) family. British Journal of Pharmacology (2002) 135, 1,13; doi:10.1038/sj.bjp.0704468 [source] |