Excitatory Neurotransmission (excitatory + neurotransmission)

Distribution by Scientific Domains


Selected Abstracts


Mechanisms of substrate transport-induced clustering of a glial glutamate transporter GLT-1 in astroglial,neuronal cultures

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2008
Takayuki Nakagawa
Abstract Glutamate uptake by the Na+ -dependent glutamate transporter GLT-1, which is predominantly expressed in astrocytes, is crucial for regulating glutamate concentration at the synaptic cleft and achieving proper excitatory neurotransmission. A body of evidence suggests that GLT-1 constitutively traffics between the plasma membrane and endosomes via an endocytosis/recycling pathway, and forms a cluster. Here, we report substrate transport via GLT-1-induced formation of GLT-1 cluster accompanied by intracellular trafficking in rat astroglial,neuronal cultures. We constructed a recombinant adenovirus expressing enhanced green fluorescence protein (EGFP)-tagged GLT-1. Adenoviral infection resulted in the expression of functional GLT-1,EGFP preferentially in astrocytes, partly as clusters. Treatment with glutamate, but not N -methyl-D-aspartate, dramatically increased the number of GLT-1 clusters within 1 h. The estimated EC50 value of glutamate was 240 ,m. In addition, glutamate decreased the cell surface expression and increased the intracellular expression of GLT-1. The GLT-1 clusters were found in early and recycling endosomes and partly in lysosomes, and were inhibited by blockade of endocytotic pathways. Ionotropic and metabotropic glutamate receptor antagonists had no effect on glutamate-induced GLT-1 clustering. The non-transportable glutamate uptake inhibitors (2S,3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate and dihydrokainate, as well as Na+ -free conditions, prevented the glutamate-induced GLT-1 clustering, whereas the competitive substrates, aspartate and L- trans -pyrrolidine-2,4-dicarboxylate, induced GLT-1 clustering. Furthermore, the Na+/K+ -ATPase inhibitor, ouabain, and the Na+ ionophores, gramicidin and monensin, produced GLT-1 clustering. Modulators of intracellular Ca2+signaling or membrane depolarization had no effect on GLT-1 clustering. Taken together, these results suggest that Na+ influx associated with GLT-1 substrate transport triggers the formation of GLT-1 clusters accompanied by intracellular trafficking via endocytotic pathways in astrocytes. [source]


Activation of class I metabotropic glutamate receptors limits dendritic growth of Purkinje cells in organotypic slice cultures

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006
Alexandra Sirzen-Zelenskaya
Abstract The development of the dendritic tree of a neuron is a complex process which is thought to be regulated strongly by signals from afferent fibers. We showed previously that the blockade of glutamatergic excitatory neurotransmission has little effect on Purkinje cell dendritic development. We have now studied the effects of glutamate receptor agonists on the development of Purkinje cell dendrites in mouse organotypic slice cultures. The activation of N -methyl- d -aspartate receptors had no major effect on Purkinje cell dendrites and the activation of (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptors was strongly excitotoxic so that no analysis of its effects on dendritic development was possible. The activation of metabotropic glutamate receptors led to a very strong inhibition of dendritic growth, resulting in Purkinje cells with very small stubby dendrites. This effect was specific for the activation of class I metabotropic glutamate receptors and could not be reduced by blocking synaptic transmission in the cultures, indicating that it was mediated by receptors present on Purkinje cells. Pharmacological experiments suggest that the signaling pathway involved does not require activation of phospholipase C or protein kinase C. The inhibition of dendritic growth by activation of class I metabotropic glutamate receptor could be a useful negative feedback mechanism for limiting the size of the dendritic tree of Purkinje cells after the establishment of a sufficient number of parallel fiber contacts. This developmental mechanism could protect Purkinje cells from excitotoxic death through excessive release of glutamate from an overload of parallel fiber contacts. [source]


Evidence for the involvement of purinergic P2X7 receptors in outer retinal processing

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006
Theresa Puthussery
Abstract Extracellular ATP mediates fast excitatory neurotransmission in many regions of the central nervous system through activation of P2X receptors. Although several P2X receptor subunits have been identified in the mammalian retina, little is known about the functional role of these receptors in retinal signalling. The purpose of the present study was to investigate whether purinergic P2X7 receptors are involved in outer retinal processing by assessing receptor localization, degradation of extracellular ATP and the effect of functional activation of P2X7 receptors on the electroretinogram (ERG). Using light and electron microscopy, we demonstrated that P2X7 receptors are expressed postsynaptically on horizontal cell processes as well as presynaptically on photoreceptor synaptic terminals in both the rat and marmoset retina. Using an enzyme cytochemical method, we showed that ecto-ATPases are active in the outer plexiform layer of the rat retina, providing a mechanism by which purinergic synaptic transmission can be rapidly terminated. Finally, we evaluated the role of P2X7 receptors in retinal function by assessing changes to the ERG response of rats after intravitreal delivery of the P2X7 receptor agonist benzoyl benzoyl ATP (BzATP). Intravitreal injection of BzATP resulted in a sustained increase (up to 58%) in the amplitude of the photoreceptor-derived a-wave of the ERG. In contrast, BzATP caused a transient reduction in the rod- and cone-derived postreceptoral responses. These results provide three lines of evidence for the involvement of extracellular purines in outer retinal processing. [source]


In vivo optical recordings of synaptic transmission and intracellular Ca2+ and Cl, in the superior colliculus of fetal rats

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2006
Yoshiyuki Sakata
Abstract Although the N -methyl- d -aspartate (NMDA) receptor is known to play a crucial role in activity-dependent remodeling of synaptic connections in the fetal superior colliculus (SC), its contribution to the electrical activity of fetal SC neurons has not been determined. Furthermore, whether ,-aminobutyric acid (GABA)-mediated inhibition occurs either as early as prenatal periods or only after eye opening has been controversial. We therefore performed optical recordings using voltage-, Ca2+ - and Cl, -sensitive fluorescent dyes to analyse synaptic transmission and changes in intracellular Ca2+ and Cl, in the SC of fetal rats that were still connected with the dams by the umbilical cord. Excitatory and inhibitory responses were evoked by focal SC stimulation. The excitatory synaptic responses are composed of early and late components. The early component was mediated by both non-NMDA and NMDA receptors, whereas the late component occurred mainly via NMDA receptors. Train pulse stimulation at higher currents was required for induction of the inhibition, which was antagonized by bicuculline, and blocking of the GABA-mediated inhibition by bicuculline uncovered masked excitatory synaptic responses. Focal SC stimulation induced increases in [Cl,]i and [Ca2+]i that were mediated by GABA-A receptors and mainly by NMDA receptors, respectively. GABA antagonists augmented SC-induced increases in [Ca2+]i. These results indicate that, in the fetal SC, excitatory and inhibitory synaptic transmissions occur before birth, that the NMDA receptor is a major contributor to excitatory synaptic transmission and increased [Ca2+]i, and that the GABA-A receptor is already functioning to inhibit excitatory neurotransmission. [source]


The effects of the glutamate antagonist memantine on brain activation to an auditory perception task

HUMAN BRAIN MAPPING, Issue 11 2009
Heidi van Wageningen
Abstract Glutamate is critically involved in the regulation of cognitive functions in humans. There is, however, sparse evidence regarding how blocking glutamate action at the receptor site during a cognitive task affects brain activation. In the current study, the effects of the glutamate antagonist memantine were examined with functional magnetic resonance imaging (fMRI). Thirty-one healthy adults were scanned twice in a counter-balanced design, either in a no-drug session or after administration of memantine for 21 days. The subjects performed a simple auditory perception task with consonant-vowel stimuli. Group-level spatial independent component analysis (ICA) was used to decompose the data and to extract task-related activations. The focus was on four task-related ICA components with frontotemporal localization. The results showed that glutamate-blockage resulted in a significant enhancement in one component, with no significant effect in the other three components. The enhanced effect of memantine was in the middle temporal gyrus, superior frontal gyrus, and middle frontal gyrus. It is suggested that the results reflect effects of glutamatergic processes primarily through non- N -methyl- D -aspartate (NMDA) receptor pathways. Moreover, the results demonstrate that memantine can be used as a probe which allows for studying the effect of excitatory neurotransmission on neuronal activation. Hum Brain Mapp, 2009. © 2009 Wiley-Liss, Inc. [source]


The Kv4.2 mediates excitatory activity-dependent regulation of neuronal excitability in rat cortical neurons

JOURNAL OF NEUROCHEMISTRY, Issue 3 2008
Bin Shen
Abstract Neuronal excitability can cooperate with synaptic transmission to control the information storage. This regulation of neuronal plasticity can be affected by alterations in neuronal inputs and accomplished by modulation of voltage-dependent ion channels. In this study, we report that enhanced excitatory input negatively regulated neuronal excitability. Enhanced excitatory input by glutamate, electric field stimulation or high K+ increased transient outward K+ current, whereas did not affect the delayed rectifier K+ current in rat cultured cortical neurons. Both the voltage-dependent K+ channel 4.2 and 4.3 subunits contributed to the increase. The increase in the K+ current density by Kv4.2 was ascribed to its cytoplasmic membrane translocation, which was mediated by NMDA type of glutamate receptor. Furthermore, enhanced excitatory input inhibited neuronal excitability. Taken together, our results suggest that excitatory neurotransmission affects neuronal excitability via the regulation of the K+ channel membrane translocation. [source]


Caffeine increases spinal excitability in humans

MUSCLE AND NERVE, Issue 3 2003
C. Walton MSc
Abstract The Hoffman reflex (H reflex) has long been established as a measure of spinal excitability. Caffeine is one of the most widely consumed drugs in the world. Because it is known to increase excitatory neurotransmission, we hypothesized that caffeine would increase spinal excitability and thus alter the H reflex by increasing its amplitude. Seven subjects each attended the laboratory on 2 days. Caffeine (6 mg/kg) was administered on one day and a placebo was administered on the other. The tibial nerve was stimulated at incremental intensities to create an H-reflex recruitment curve prior to capsule administration (pretest) and 1 h later (posttest) on each day. The slope of H-reflex recruitment curve normalized to that of the M wave (Hslp/Mslp) was compared (pretest to posttest). Caffeine increased spinal excitability 43 ± 17% (P < 0.05). Thus, caffeine may be used to safely increase spinal excitability in electrophysiological studies of the human neuromuscular system. Our results also suggest that caffeine intake should be controlled when the H reflex is used in diagnostic and experimental situations. Muscle Nerve 28: 359,364, 2003 [source]


Regenerated synapses in lamprey spinal cord are sparse and small even after functional recovery from injury

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 14 2010
Paul A. Oliphint
Abstract Despite the potential importance that synapse regeneration plays in restoring neuronal function after spinal cord injury (SCI), even the most basic questions about the morphology of regenerated synapses remain unanswered. Therefore, we set out to gain a better understanding of central synapse regeneration by examining the number, distribution, molecular composition, and ultrastructure of regenerated synapses under conditions in which behavioral recovery from SCI was robust. To do so, we used the giant reticulospinal (RS) neurons of lamprey spinal cord because they readily regenerate, are easily identifiable, and contain large synapses that serve as a classic model for vertebrate excitatory neurotransmission. Using a combination of light and electron microscopy, we found that regenerated giant RS synapses regained the basic structures and presynaptic organization observed at control giant RS synapses at a time when behavioral recovery was nearly complete. However, several obvious differences remained. Most strikingly, regenerated giant RS axons produced very few synapses. In addition, presynaptic sites within regenerated axons were less complex, had fewer vesicles, and had smaller active zones than normal. In contrast, the densities of presynapses and docked vesicles were nearly restored to control values. Thus, robust functional recovery from SCI can occur even when the structures of regenerated synapses are sparse and small, suggesting that functional recovery is due to a more complex set of compensatory changes throughout the spinal network. J. Comp. Neurol. 518:2854,2872, 2010. © 2010 Wiley-Liss, Inc. [source]


VGLUT1 and VGLUT2 innervation in autonomic regions of intact and transected rat spinal cord

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 6 2007
Ida J. Llewellyn-Smith
Abstract Fast excitatory neurotransmission to sympathetic and parasympathetic preganglionic neurons (SPN and PPN) is glutamatergic. To characterize this innervation in spinal autonomic regions, we localized immunoreactivity for vesicular glutamate transporters (VGLUTs) 1 and 2 in intact cords and after upper thoracic complete transections. Preganglionic neurons were retrogradely labeled by intraperitoneal Fluoro-Gold or with cholera toxin B (CTB) from superior cervical, celiac, or major pelvic ganglia or adrenal medulla. Glutamatergic somata were localized with in situ hybridization for VGLUT mRNA. In intact cords, all autonomic areas contained abundant VGLUT2-immunoreactive axons and synapses. CTB-immunoreactive SPN and PPN received many close appositions from VGLUT2-immunoreactive axons. VGLUT2-immunoreactive synapses occurred on Fluoro-Gold-labeled SPN. Somata with VGLUT2 mRNA occurred throughout the spinal gray matter. VGLUT2 immunoreactivity was not noticeably affected caudal to a transection. In contrast, in intact cords, VGLUT1-immunoreactive axons were sparse in the intermediolateral cell column (IML) and lumbosacral parasympathetic nucleus but moderately dense above the central canal. VGLUT1-immunoreactive close appositions were rare on SPN in the IML and the central autonomic area and on PPN. Transection reduced the density of VGLUT1-immunoreactive axons in sympathetic subnuclei but increased their density in the parasympathetic nucleus. Neuronal cell bodies with VGLUT1 mRNA occurred only in Clarke's column. These data indicate that SPN and PPN are densely innervated by VGLUT2-immunoreactive axons, some of which arise from spinal neurons. In contrast, the VGLUT1-immunoreactive innervation of spinal preganglionic neurons is sparse, and some may arise from supraspinal sources. Increased VGLUT1 immunoreactivity after transection may correlate with increased glutamatergic transmission to PPN. J. Comp. Neurol. 503:741,767, 2007. © 2007 Wiley-Liss, Inc. [source]