Home About us Contact | |||
Excellent Properties (excellent + property)
Selected AbstractsSynthesis and characterization of thermally stable, high-modulus polyimides containing benzimidazole moietiesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 8 2009Shuang Wang Abstract A series of novel benzimidazole-containing aromatic polyimides were prepared from synthesized 5,4,-diamino-2-phenyl benzimidazole (DAPBI), and commercial dianhydrides by the conventional two-step polymerization. The obtained films were amorphous and could afford flexible, transparent, and tough films with excellent thermal and mechanical properties. They showed high levels of tension strength of up to 234 MPa, modulus of up to 5.6 GPa without any stretching. According to thermal stability measurements, the glass-transition temperatures of the polymers were observed between 329 and 425 °C. The 5% weight-loss temperatures of most polyimides were above 600 °C in nitrogen. Excellent properties of these polyimides were proved to be attributed to the rigid-rod structure and hydrogen bond of intermacromolecular. SAXS and SEM results showed self-molecular orientation caused the formation of rod-like extended conformations. It was demonstrated that high degree of supramolecular order led to the increase of thermal stability and mechanical properties of the polyimide films. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2024,2031, 2009 [source] Polyimides based on 2,5-bis(4-aminophenoxy)biphenylJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 4 2002Chin-Ping Yang Abstract A diamine monomer II, 2,5-bis(4-aminophenoxy)biphenyl, was prepared through a nucleophilic substitution reaction of phenylhydroquinone and p -chloronitrobenzene in the presence of potassium carbonate in N,N -dimethylformamide, followed by catalytic reduction with hydrazine and Pd/C. A series of all-aromatic, organosoluble polyimides bearing pendent phenyl groups were synthesized from the diamine with six kinds of commercial dianhydrides via a conventional two-stage process. For improving solubility of polypyromellitimide, copolypyromellitimides with arbitrary solubilities were prepared from II and a pair of dianhydrides, which were mixed at certain molar ratios. These polymers showed good solubilities in N -methyl-2-pyrrolidone and m -cresol. The softening temperatures of these polyimides were recorded between 206 and 269 °C. Polymers had glass-transition temperatures at 230,286 °C and 10% weight-loss temperatures above 521 °C in air or nitrogen atmospheres. Their films had high tensile moduli and strengths. Excellent properties of these polyimides are attributed to the incorporation of the pendent phenyl group in diamine II. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 429,438, 2002; DOI 10.1002/pola.10116 [source] Sensitive, label-free protein assay using 1-ethyl-3-methylimidazolium tetrafluoroborate-supported microchip electrophoresis with laser-induced fluorescence detectionELECTROPHORESIS, Issue 9 2008Yuanhong Xu Abstract Based on the dimer,monomer equilibrium movement of the fluorescent dye Pyronin Y (PY), a rapid, simple, highly sensitive, label-free method for protein detection was developed by microchip electrophoresis with LIF detection. PY formed a nonfluorescent dimer induced by the premicellar aggregation of an anionic surfactant, SDS, however, the fluorescence intensity of the system increased dramatically when proteins such as BSA, bovine hemoglobin, cytochrome c, and trypsin were added to the solution due to the transition of dimer to fluorescent monomer. Furthermore, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) instead of PBS was applied as running buffers in microchip electrophoresis. Due to the excellent properties of EMImBF4, not only nonspecific protein adsorption was more efficiently suppressed, but also approximately ten-fold higher fluorescence intensity enhancement was obtained than that using PBS. Under the optimal conditions, detection limits for BSA, bovine hemoglobin, cytochrome c, and trypsin were 1.00×10,6, 2×10,6, 7×10,7, and 5×10,7 mg/mL, respectively. Thus, without covalent modification of the protein, a protein assay method with high sensitivity was achieved on microchips. [source] Machine Tools With Metal Foams,ADVANCED ENGINEERING MATERIALS, Issue 9 2006R. Neugebauer Abstract Machine tool construction calls for subassemblies with reduced weight while retaining excellent dynamic properties. Modern frame components do always meet required static stiffness but often display oscillation problems due to low component wall thicknesses. Breaking down solid steel structure into wide-area sandwich designs such as steel-aluminum foam-steel panels results in good static properties to be combined with excellent properties since these sandwiches have 30 to 40 times the flexural strength. This is due to their major geometrical moment of inertia in relation to adequate-mass steel sheet metals. In addition, the foam core dampens oscillations. Studies on foamed steel sections indicate that 2 to 3 times higher damping is likely in relation to unfoamed steel sections. These benefits were the motivation for the Chemnitz Metal Foam Center to accelerate development of extremely large-format sandwiches with dimensions of 1,500,×,1,000,mm2. [source] Magnetic Multi-Functional Nano Composites for Environmental ApplicationsADVANCED FUNCTIONAL MATERIALS, Issue 8 2009Jie Dong Abstract A novel concept is proposed to synthesize a new class of composites featuring magnetic, molecular sieve and metallic nanoparticle properties. These multi-functional materials have potential applications as recyclable catalysts, disinfectants and sorbents. The magnetic property enables effective separation of the spent composites from complex multiphase systems for regeneration and recycle, safe disposal of the waste and/or recovery of loaded valuable species. The zeolite molecular sieve provides a matrix which supports a remarkably new, simple, efficient and economical method to make stable, supported silver nanoparticles by silver ion exchange and controlled thermal reduction. The silver nanoparticles generated in this way have excellent properties such as high reactivity and good thermal stability without aggregation, which act as nano reactors for desired functionality in a wide range of applications. Magnetic component (Fe3O4), molecular sieve matrix (zeolite) and silver nanoparticles generated by ion exchange followed by controlled reduction, together form this unique novel composite with designed functions. It represents a practically operational, economical, sustainable and environmentally friendly new advanced functional material. This paper focuses on the novel synthesis and characterization of the composite, with an example of applications as sorbents for the removal of vapor-phase mercury from the flue gas of coal-fired power plants. [source] Bayesian estimation of traffic lane stateINTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 1 2003Ivan Nagy Abstract Modelling of large transportation systems requires a reliable description of its elements that can be easily adapted to the specific situation. This paper offers mixture model as a flexible candidate for modelling of such element. The mixture model describes particular and possibly very different states of a specific system by its individual components. A hierarchical model built on such elements can describe complexes of big city communications as well as railway or highway networks. Bayesian paradigm is adopted for estimation of parameters and the actual component label of the mixture model as it serves well for the subsequent decision making. As a straightforward application of Bayesian method to mixture models leads to infeasible computations, an approximation is applied. For normal stochastic variations, the resulting estimation algorithm reduces to a simple recursive weighted least squares. The elementary modelling is demonstrated on a model of traffic flow state in a single point of a roadway. The examples for simulated as well as real data show excellent properties of the suggested model. They represent much wider set of extensive tests made. Copyright © 2003 John Wiley & Sons, Ltd. [source] Morphology and thermal and dielectric behavior of cycloaliphatic epoxy/trimethacrylate interpenetrating polymer networks for vacuum-pressure-impregnation electrical insulationJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008Jingkuan Duan Abstract Vacuum pressure impregnation has been known as the most advanced impregnation technology that has ever been developed for large and medium high-voltage electric machines and apparatuses. We developed one new type of vacuum-pressure-impregnation resin with excellent properties by means of a novel approach based on in situ sequential interpenetrating polymer networks resulting from the curing of trimethacrylate monomer [trimethylol-1,1,1-propane trimethacrylate (TMPTMA)] and cycloaliphatic epoxy resin (CER). In this study, the influence of the concentrations of the components and their microstructures on their thermal and dielectric behaviors were investigated for the cured CER/TMPTMA systems via atomic force microscopy, dynamic mechanical analysis, thermogravimetric analysis, and dielectric analysis. The investigation results show that the addition of TMPTMA to the CER,anhydride system resulted in the formation of a uniform and compact microstructure in the cured epoxy system. This led the cured CER/TMPTMA systems to show much higher moduli in comparison with the pure CER,anhydride system. The thermogravimetric analysis results show that there existed a decreasing tendency in the maximum thermal decomposition rates of the cured CER/TMPTMA systems, which implies that the thermal stability properties improved to some extent. The dielectric analysis results show that the cured CER/TMPTMA systems displayed quite different dielectric behaviors in the wide frequency range 0.01 Hz,1 MHz and in the wide temperature range 27,250°C compared with the cured CER,anhydride system. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Yttria,polystyrene,polypropylene composite for fine dyeable fibersJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2008Chengbing Yu Abstract Fine polypropylene fiber has many excellent properties, but it is difficult to dye because of the absence of dye sites in the molecular chain and high crystallinity. Fine polypropylene/hybrid polystyrene (yttria) fiber melt-spun from blends of polypropylene and a small amount of nanohybrid polystyrene with modified yttria incorporated was prepared to improve the dyeing properties. The dyeability, orientation, degree of crystallinity, phase morphology, and mechanical properties of pure polypropylene and the blend fibers were investigated. It was found that the crystallinity and morphology of these phases in the blend systems were different. With the existence of nanohybrid polystyrene, the fine modified polypropylene filaments had practical mechanical properties, the amorphous region of the polypropylene/hybrid polystyrene (yttria) fiber increased, and the modified polypropylene fiber dyed easily and had good fastness to soaping because of the complexation of the disperse dye and yttrium in the blend system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Fortschritte beim Rührreibschweißen von Aluminium, Magnesium und StahlMATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, Issue 9 2006S. Sheikhi Dr.-Ing. Friction Stir Welding; Aluminium; Magnesium; Steel; Tailored welded blanks Abstract Das Rührreibschweißen (Friction Stir Welding (FSW)) stellt einen innovativen Schweißprozess zum Fügen von Leichtmetallen insbesondere von Aluminiumlegierungen dar. Die Herstellung von Aluminiumverbindungen mit konventionellen Schmelzschweißverfahren erfüllt nicht immer und nicht bei jeder Legierung die von der Industrie gestellten Qualitätsanforderungen. Das Rührreibschweißen stellt eine Alternative zu den Schmelzschweißverfahren dar. Die entstehenden Schweißnähte weisen gute mechanische Eigenschaften auf, das Verfahren ist robust und seine Reproduzierbarkeit sehr gut. Im Rahmen dieser Arbeit wird der Einsatz des Rührreibschweißens zum Fügen von Aluminium- und Magnesiumlegierungen erläutert. Dabei werden artgleiche und artungleiche Verbindungen und deren mechanische Eigenschaften beschrieben. Das Rührreibschweißen von Stahl mit seinen besonderen Anforderungen an das Schweißwerkzeug wird ebenfalls vorgestellt. Progresses on the friction stir welding of aluminium, magnesium and steel Friction Stir Welding (FSW) represents an innovative welding process for joining light metal, especially, aluminium and its alloys. Friction Stir Welding offers an attractive alternative to conventional fusion welding processes because of the excellent properties (particularly ductility), reproducibility, robustness, and surface finish obtained with the process. Within the scope of this work the Friction Stir Welding-Process with its possible joint configurations is explained. The focus of this work concentrates on weldability studies concerning cladded aluminium alloys, aluminium cast alloys, aluminium tailored welded blanks both from similar and dissimilar joints produced in aluminium, magnesium and steel. The mechanical properties of the welded samples will be discussed. [source] Optical and Structural Analysis of GaN Grown by Remote Plasma Enhanced Laser Induced Chemical Vapour DepositionPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 1 2003Afifuddin Abstract High quality polycrystalline gallium nitride (GaN) films have been grown by remote plasma enhanced laser induced chemical vapour deposition (RPE-LICVD) on sapphire, silicon, and quartz substrates at temperatures below 600 °C. Transmission spectra of the films indicate excellent properties with band gap 3.38 ± 0.02 eV. A yellow band-to-band transition at 2.2 eV is observed. X-ray diffraction patterns reveal the (0002) wurtzite reflection at 2, = 34.6° is dominant. Raman spectra of the films are discussed with respect to the phonon frequencies and strain-related phenomena. Compositional analysis with heavy ion Elastic Recoil Detection shows stoichiometric nitrogen to gallium ratios and relatively small amounts of incorporated oxygen. [source] Preparation and characterization of pore wall-functionalized three-dimensionally ordered macroporous syndiotactic polystyrenePOLYMER ENGINEERING & SCIENCE, Issue 2 2009Xu Zhang A versatile method for the modification of three-dimensionally ordered macroporous (3DOM) highly syndiotactic polystyrene via chloromethylation at the pore walls has been demonstrated. This was followed by reaction with dimethylamine to establish a versatile approach to functionalization of such macroporous polymers. High syndiotacticity of 3DOM sPS is necessary for maintenance of the morphology of the original ordered pore structure after chloromethylation. The relative content of chloromethyl groups was shown to be 1.89 mmol/g3DOM sPS by TG-titration. The functionalized 3DOM sPS was characterized by SEM, FT-IR, and DSC to demonstrate that chloromethylation had occurred at the pore walls and that the dimethylamino moiety had replaced the chlorine atom of the chloromethyl group. DSC examination of the modified polymer indicated that the crystallinity of 3DOM sPS is little affected by functionalization. Thus the excellent properties of sPS are retained by the functionalized material. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers [source] Preparation, characterization and application of zwitterionic polymers and membranes: current developments and perspectivePOLYMER INTERNATIONAL, Issue 12 2009Fengqin Xuan Abstract Because of their unique pendant-side chain structures and excellent properties, zwitterionic polymers and membranes, especially zwitterionic hybrids, have attracted increasing interest in recent years. Presently, they can be potentially applied in such fields as nonlinear optical systems, ionic conduction, biomedical processing and chemical separation. In view of their significance to academia and industrial processes, this review gives a brief summary of current developments in the preparation, characterization and potential application of zwitterionic polymers and membranes. Novel approaches to prepare zwitterionic hybrids are highlighted. The present state and future perspective are also discussed. Hopefully, this review can promote the understanding of zwitterionic hybrid polymers and membranes. Copyright © 2009 Society of Chemical Industry [source] Synthesis and properties of room temperature curable trimethoxysilane-terminated polyurethane and their dispersionsPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 8 2007Sankaraiah Subramani Abstract The purpose of this research is to study the synthesis and characterization of stable aqueous dispersions of externally chain extended polyurethane/urea compositions terminated by hydrolyzable or hydrolyzed trialkoxysilane groups incorporated through secondary amino groups. These dispersions with excellent storage stability are substantially free from organic solvents which cure to water and solvent resistant, tough, scratch resistant, preferably light stable (non-yellowing) silylated polyurethane (SPU) films. The films were characterized by FT-IR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile strength and water contact angle measurements, nanoindentation, gel content, water and xylene swellability tests. The properties of the films were discussed and correlated in detail by changing length of soft segment, diisocyanates, NCO/OH ratio and chain extender, ethylenediamine (EDA). From the results, it was found that the particle size and viscosity are lower whereas the gel content and thermal stability are higher for SPUs. Modulus, hardness and tensile properties of SPU films are superior compared to EDA-PU film. Higher water contact angle and residual weight percentage of SPU films confirm silylation of PU by [3-(phenylamino)propyl]trimethoxysilane (PAPTMS). Increase in NCO/OH ratios consumes more quantity of PAPTMS which makes PU with superior mechanical properties. Higher PAPTMS content in SPU results in effective crosslinking of the functional silanol groups formed by hydrolysis reaction of trimethoxysilane groups. Overall, SPUs synthesized at 1.4 NCO/OH ratio using Poly-(oxytetramethylene)glycol (PTMG)-2000 and isophorone diisocyanate (or) toluene-2,4-diisocyanate have excellent properties compared to SPUs prepared using PTMG-1000 and at 1.2 and 1.6 NCO/OH ratios. SPUs prepared at 1.6 NCO/OH ratio are brittle due to higher crosslinking density. In addition, the crosslinking density of the films can be modified through silane end-group modification to produce SPUs with a wide range of physical properties. Copyright © 2007 John Wiley & Sons, Ltd. [source] A preliminary analysis and model of prostate injection distributionsTHE PROSTATE, Issue 4 2006Scott L. Chowning Abstract PURPOSE Understanding the internal dynamics of prostate injections, particularly injection pattern distribution is a key step to developing new therapies for prostate disease that may be best served with a direct injection approach. Due to excellent properties involving liquid contrast agents, MRI can be used for targeting and monitoring of injections into organs and tissues. MATERIALS AND METHODS Eleven intraprostatic injections were performed in vivo with canines using a custom transrectal guiding and imaging system for use in a standard 1.5 T MR scanner. In addition, 25 injections were performed on excised cadaveric human prostates, using a MedRad SpectrisÔ injector system. MRI was used to guide the injections and monitor intraparenchymal injection distribution. RESULTS T1 and T2-weighted MR images were correlated with histology to produce three-dimensional data sets that can be used to analyze trends in injection patterns. This analysis was used to develop strategies for injection prediction such as gadolinium preinjections and diffusion-weighted imaging guidance. In addition, a rough model of prostate injections is described, and a preliminary injection guide is developed that takes into account the individual clinician's goals for therapy. CONCLUSIONS MR visualization of injected therapeutic agents allows for prediction and monitoring of drug distributions, possibly improving efficacy and reducing side effects. Injection analysis and modeling may be used to assist in optimizing clinical treatments that require or would benefit from focal parenchymal injections into the prostate. © 2005 Wiley-Liss, Inc. [source] Lophine derivatives as versatile analytical toolsBIOMEDICAL CHROMATOGRAPHY, Issue 2-3 2003Kenichiro Nakashima Abstract Lophine (2,4,5-triphenylimidazole) derivatives as versatile analytical tools in biomedical sciences are described. Chemiluminescence (CL) and fluorescence (FL) properties of the lophine derivatives are first demonstrated including the CL reaction mechanism, effects of substituents on CL yields, FL spectral behaviors, etc. Next, analytical applications to the determination of metal ions such as cobalt (II) and chromium (VI) are discussed. Finally, the application studies of lophine derivatives as CL and FL reagents for the determination of organic substances in biological materials are presented. Among the derivatives, 2-(4-hydrazinocarbonylphenyl)-4,5-diphenylimidazole (HCPI) and 4-(4,5-diphenyl-1H -imidazol-2-yl)benzoyl chloride (DIB-Cl) are studied, with their excellent properties as labeling reagents for fatty acids and amines and/or phenols, respectively, in high-performance liquid chromatography. The utility of boronic acid derivatives as CL enhancers is also discussed in this review. Copyright © 2003 John Wiley & Sons, Ltd. [source] A new family of generalized-, time integration algorithms without overshoot for structural dynamicsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 12 2008Yu KaiPing Abstract A new family of generalized-, (G-,) algorithm without overshoot is presented by introducing seven free parameters into the single-step three-stage formulation for solution of structural dynamic problems. It is proved through finite difference analysis that these algorithms are unconditionally stable, second-order accurate and numerical dissipation controllable. The comparison of the new G-, algorithms with the commonly used G-, algorithms shows that the newly developed algorithms have the advantage of eliminating the overshooting characteristics exhibited by the commonly used algorithms while their excellent property of dissipation is preserved. The numerical simulation results obtained using a single-degree-of-freedom system and a two-degree-of-freedom system to represent the character of typical large systems coincide well with the results of theoretical analyses. Copyright © 2008 John Wiley & Sons, Ltd. [source] Study of corrosion resistance improvement by metallic coating for overhead transmission line conductorELECTRICAL ENGINEERING IN JAPAN, Issue 1 2008Masanori Isozaki Abstract Applying anticorrosion grease and aluminum-clad steel (AC) wires to ACSR have been adopted as general methods to protect overhead transmission line conductors and/or wires from corrosion. However, in some cases those means have been found to be ineffective on some transmission lines passing through acid atmosphere in the vicinity of a factory exhausting acid smoke. The corrosion caused by acid atmosphere is characterized by a higher speed in its progress as is well known. As means against such acid corrosion, application of high-purity aluminum, selective removal of intermetallic compound in aluminum, and plastic coating wires have been reported before, and each has both advantages and disadvantages. In a former report, we found that a new type of anticorrosion grease shows an excellent property against acid atmosphere as well as in a salty condition. Here we present a new type of anticorrosion technology of applying high-corrosion-resistance aluminum alloy or zinc coatings on each component wire of a conductor that we succeeded in developing through a serial study of anticorrosion methods on overhead transmission lines. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 163(1): 41,47, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.20365 [source] |