Home About us Contact | |||
Excellent Optical Transparency (excellent + optical_transparency)
Selected AbstractsColorless polyimide nanocomposite films: Thermomechanical properties, morphology, and optical transparencyJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008Hyo-Seong Jin Abstract Polyimide (PI)/organoclay hybrid films were prepared by the solution intercalation method, using dodecyltriphenylphosphonium-mica (C12PPh-Mica) as the organoclay. The variations with organoclay content of the thermomechanical properties, morphology, and optical transparency of the hybrids were examined for concentrations from 0 to 1.0 wt %. For low clay contents (, 0.5 wt %), the clay particles are better dispersed in the matrix polymer, without the formation of large agglomerates of particles, than they are for high clay contents. However, agglomerated structures form and become denser in the PI matrix for clay contents , 0.75 wt %. This is in agreement with the observed trends in the thermomechanical properties and the optical transparency, which worsen drastically when the clay content of the C12PPh-Mica/PI hybrids reaches 0.75 wt %. However, when the amount of organoclay in the hybrid is 0.75 wt %, the initial modulus of the hybrid film is at its maximum value. The PI hybrid films were found to exhibit excellent optical transparencies and to be almost colorless. It was found, however, that the transparency decreases slightly with increases in the organoclay content because of agglomeration of the clay particles. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Optical Power Limiters: Symmetric Versus Unsymmetric Platinum(II) Bis(aryleneethynylene)s with Distinct Electronic Structures for Optical Power Limiting/Optical Transparency Trade-off Optimization (Adv. Mater.ADVANCED FUNCTIONAL MATERIALS, Issue 4 20098/2009) The development of symmetric and unsymmetric platinum(II) bis(acetylide)s as highly transparent optical limiters is described by Wong and co-workers on page 531. Their excited state character is governed by electronic structure, which significantly affects their photophysical properties and optical power limiting (OPL) behavior. The sound OPL responses and low OPL thresholds together with their excellent optical transparency render these materials very promising candidates for practical devices for the protection of human eyes and other delicate electro-optic sensors. [source] Polymer,Clay Nanocomposites Exhibiting Abnormal Necking Phenomena Accompanied by Extremely Large Reversible Elongations and Excellent Transparency,ADVANCED MATERIALS, Issue 17 2006K. Haraguchi Soft and transparent polymer,clay nanocomposites (see figure), consisting of hydrophobic poly(2-methoxyethylacrylate) and hydrophilic inorganic clay, with a unique clay-network morphology have been synthesized by in,situ free-radical polymerization. The nanocomposites exhibit the first observation of abnormal necking behavior accompanied by extremely large reversible elongation (1000,3000,%) and excellent optical transparency, regardless of the clay content (1,30,wt,%). [source] Synthesis, characterization, and properties of novel ladderlike phosphorus-containing polysilsesquioxanesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2003Chin-Lung Chiang Abstract Novel ladderlike polysilsesquioxanes that contain phosphorus were successfully synthesized by the sol,gel method. The polysilsesquioxanes were characterized by Fourier transform infrared spectroscopy, 29Si NMR, and X-ray diffraction. The characterizations demonstrated that the polymer possesses a typical ladderlike structure. The thermogravimetric and differential scanning calorimetric data revealed that the polysilsesquioxanes possess excellent thermal stability. A kinetic analysis of thermal degradation showed that the activation energy of thermal degradation is 187 kJ/mol, according to Kissinger's method. The activation energy of thermal degradation normally increases with conversion (from 171 to 309 kJ/mol) according to Ozawa's method. The average activation energy, calculated by Ozawa's method, was 209 kJ/mol. The scanning electron microscopic photograph and Si and P mappings of ladderlike polysilsesquioxanes showed that the particles were uniformly dispersed at the molecular level and that the sizes of the polysilsesquioxane particles were less than 100 nm. The ultraviolet,visible spectra of the ladderlike polysilsesquioxanes revealed no absorbance in the range of 400,800 nm. Ladderlike polysilsesquioxanes possess excellent optical transparency and excellent flame retardance. This transmittance may be used as a criterion for identifying the formation of a homogeneous phase. These polymers have great potential in waveguide applications. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1371,1379, 2003 [source] |