Home About us Contact | |||
Excellent Model System (excellent + model_system)
Selected AbstractsVestigial expression in the Drosophila embryonic central nervous systemDEVELOPMENTAL DYNAMICS, Issue 9 2008Kirsten A. Guss Abstract The Drosophila central nervous system is an excellent model system in which to resolve the genetic and molecular control of neuronal differentiation. Here we show that the wing selector vestigial is expressed in discrete sets of neurons. We track the axonal trajectories of VESTIGIAL-expressing cells in the ventral nerve cord and show that these cells descend from neuroblasts 1-2, 5-1, and 5-6. In addition, along the midline, VESTIGIAL is expressed in ventral unpaired median motorneurons and cells that may descend from the median neuroblast. These studies form the requisite descriptive foundation for functional studies addressing the role of vestigial during interneuron differentiation. Developmental Dynamics 237:2483,2489, 2008. © 2008 Wiley-Liss, Inc. [source] Wnt6 expression in epidermis and epithelial tissues during Xenopus organogenesisDEVELOPMENTAL DYNAMICS, Issue 3 2008Danielle L. Lavery Abstract Here, we report the localization within embryonic tissues of xWnt6 protein; together with the temporal and spatial expression of Xenopus laevis Wnt6 mRNA. Wnt6 expression in Xenopus embryos is low until later stages of neurulation, when it is predominantly found in the surface ectoderm. Wnt6 expression increases during early organogenesis in the epidermis overlaying several developing organs, including the eye, heart, and pronephros. At later stages of development, Wnt6 mRNA and protein generally localize in epithelial tissues and specifically within the epithelial tissues of these developing organs. Wnt6 localization correlates closely with sites of both epithelial to mesenchymal transformations and mesenchymal to epithelial transformations. Xenopus Wnt6 sequence and its expression pattern are highly conserved with other vertebrates. Xenopus embryos, therefore, provide an excellent model system for investigating the function of vertebrate Wnt6 in organ development and regulation of tissue architecture. Developmental Dynamics 237:768,779, 2008. © 2008 Wiley-Liss, Inc. [source] Forked end: a novel transmembrane protein involved in neuromuscular specificity in drosophila identified by gain-of-function screeningDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2002Takeshi Umemiya Abstract The Drosophila neuromuscular connectivity provides an excellent model system for studies on target recognition and selective synapse formation. To identify molecules involved in neuromuscular recognition, we conducted gain-of-function screening for genes whose forced expression in all muscles alters the target specificity. We report here the identification of a novel transmembrane protein, Forked end (FEND), encoded by the fend gene, by the said screening. When the FEND expression was induced in all muscles, motoneurons that normally innervate muscle 12 formed ectopic synapses on a neighboring muscle 13. The target specificity of these motoneurons was also altered in the loss-of-function mutant of fend. During embryonic development, fend mRNA was detected in a subset of cells in the central nervous system and in the periphery. These results suggest that FEND is a novel axon guidance molecule involved in neuromuscular specificity. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 205,214, 2002 [source] Analysis of cell signalling in the rodent pineal gland deciphers regulators of dynamic transcription in neural/endocrine cells,EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2001Jörg H. Stehle Abstract In neurons, a temporally restricted expression of cAMP-inducible genes is part of many developmental and adaptive processes. To understand such dynamics, the neuroendocrine rodent pineal gland provides an excellent model system as it has a clearly defined input, the neurotransmitter norepinephrine, and a measurable output, the hormone melatonin. In this system, a regulatory scenario has been deciphered, wherein cAMP-inducible genes are rapidly activated via the transcription factor phosphoCREB to induce transcriptional events necessary for an increase in hormone synthesis. However, among the activated genes is also the inhibitory transcription factor ICER. The increasing amount in ICER protein leads ultimately to the termination of mRNA accumulation of cAMP-inducible genes, including the gene for the Aa-nat that controls melatonin production. This shift in ratio of phosphoCREB and ICER levels that depends on the duration of stimulation can be interpreted as a self-restriction of cellular responses in neurons and has also been demonstrated to interfere with cellular plasticity in many non-neuronal systems. [source] Further characterization of human fetal osteoblastic hFOB 1.19 and hFOB/ER, cells: Bone formation in vivo and karyotype analysis using multicolor fluorescent in situ hybridizationJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2002M. Subramaniam Abstract We have previously generated an immortalized human fetal osteoblastic cell line (hFOB) using stably transfected temperature sensitive SV40 T-antigen (Harris et al. [1995a] J. Bone. Miner. Res. 10:178,1860). To characterize these cells for phenotypic/genotypic attributes desired for a good cell model system, we performed karyotype analysis by multicolor fluorescent in situ hybridization (M-FISH), their ability to form bone in vivo without developing cell transformation, and finally their ability to form extracellular matrix formation in vitro. The karyotype analysis of hFOB cells revealed structural or numeric anomalies involving 1,2 chromosomes. In contrast, the human osteosarcoma MG63 cells displayed multiple, and often complex, numeric, and structural abnormalities. Subcutaneous injection of hFOB cells in the presence of Matrigel into nude mice resulted in bone formation after 2,3 weeks. Electron microscopic analysis of the extracellular matrix deposited by hFOB cells in culture revealed a parallel array of lightly banded fibrils typical of the fibrillar collagens such as type I and III. These results demonstrate that the hFOB cell line has minimal chromosome abnormalities, exhibit the matrix synthetic properties of differentiated osteoblasts, and are immortalized but non-transformed cell line. These hFOB cells thus appear to be an excellent model system for the study of osteoblast biology in vitro. J. Cell. Biochem. 87: 9,15, 2002. © 2002 Wiley-Liss, Inc. [source] Evolutionary transitions among dioecy, androdioecy and hermaphroditism in limnadiid clam shrimp (Branchiopoda: Spinicaudata)JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 9 2009S. C. WEEKS Abstract Examinations of breeding system transitions have primarily concentrated on the transition from hermaphroditism to dioecy, likely because of the preponderance of this transition within flowering plants. Fewer studies have considered the reverse transition: dioecy to hermaphroditism. A fruitful approach to studying this latter transition can be sought by studying clades in which transitions between dioecy and hermaphroditism have occurred multiple times. Freshwater crustaceans in the family Limnadiidae comprise dioecious, hermaphroditic and androdioecious (males + hermaphrodites) species, and thus this family represents an excellent model system for the assessment of the evolutionary transitions between these related breeding systems. Herein we report a phylogenetic assessment of breeding system transitions within the family using a total evidence comparative approach. We find that dioecy is the ancestral breeding system for the Limnadiidae and that a minimum of two independent transitions from dioecy to hermaphroditism occurred within this family, leading to (1) a Holarctic, all-hermaphrodite species, Limnadia lenticularis and (2) mixtures of hermaphrodites and males in the genus Eulimnadia. Both hermaphroditic derivatives are essentially females with only a small amount of energy allocated to male function. Within Eulimnadia, we find several all-hermaphrodite populations/species that have been independently derived at least twice from androdioecious progenitors within this genus. We discuss two adaptive (based on the notion of ,reproductive assurance') and one nonadaptive explanations for the derivation of all-hermaphroditism from androdioecy. We propose that L. lenticularis likely represents an all-hermaphrodite species that was derived from an androdioecious ancestor, much like the all-hermaphrodite populations derived from androdioecy currently observed within the Eulimnadia. Finally, we note that the proposed hypotheses for the dioecy to hermaphroditism transition are unable to explain the derivation of a fully functional, outcrossing hermaphroditic species from a dioecious progenitor. [source] Why there is better evidence for culture in fish than chimpanzeesJOURNAL OF FISH BIOLOGY, Issue 2003K. N. Laland Fish have comparatively small brains and are not renowned for their intelligence. Yet a series of laboratory experiments on the guppy reveals that they can be surprisingly good at learning from each other, and that social learning processes can mediate behavioural traditions analogous to the tool using traditions of different populations of chimpanzees. Transmission chain experiments have established that arbitrary and even maladaptive information can be socially transmitted among shoals of fish. Studies of behavioural innovation in guppies are strikingly consistent with findings of equivalent studies in primates. There are strong sex differences in innovatory tendencies and social learning abilities in guppies, which also parallel observations of primates. These studies suggest that the adage ,necessity is the mother of invention' may be a characteristic feature of animal innovation. When considered in combination with the findings of transfer experiments carried out on natural populations of fish, it becomes apparent that fish are an excellent model system for studies of animal social learning and culture. [source] Modulation of Aanat gene transcription in the rat pineal glandJOURNAL OF NEUROCHEMISTRY, Issue 2 2010Anthony K. Ho Abstract The main function of the rat pineal gland is to transform the circadian rhythm generated in the suprachiasmatic nucleus into a rhythmic signal of circulating melatonin characterized by a large nocturnal increase that closely reflects the duration of night period. This is achieved through the tight coupling between environmental lighting and the expression of arylalkylamine- N -acetyltransferase, the rhythm-controlling enzyme in melatonin synthesis. The initiation of Aanat transcription at night is controlled largely by the norepinephrine-stimulated phosphorylation of cAMP response element-binding protein by protein kinase A. However, to accurately reflect the duration of darkness, additional signaling mechanisms also participate to fine-tune the temporal profile of adrenergic-induced Aanat transcription. Here, we reviewed some of these signaling mechanisms, with emphasis on the more recent findings. These signaling mechanisms can be divided into two groups: those involving modification of constitutively expressed proteins and those requiring synthesis of new proteins. This review highlights the pineal gland as an excellent model system for studying neurotransmitter-regulated rhythmic gene expression. [source] From fundamental studies of sporulation to applied spore researchMOLECULAR MICROBIOLOGY, Issue 2 2005Imrich Barák Summary Sporulation in the Gram-positive bacterium, Bacillus subtilis, has been used as an excellent model system to study cell differentiation for almost half a century. This research has given us a detailed picture of the genetic, physiological and biochemical mechanisms that allow bacteria to survive harsh environmental conditions by forming highly robust spores. Although many basic aspects of this process are now understood in great detail, including the crystal and NMR structures of some of the key proteins and their complexes, bacterial sporulation still continues to be a highly attractive model for studying various cell processes at a molecular level. There are several reasons for such scientific interest. First, some of the complex steps in sporulation are not fully understood and/or are only described by ,controversial' models. Second, intensive research on unicellular development of a single microorganism, B. subtilis, left us largely unaware of the multitude of diverse sporulation mechanisms in many other Gram-positive endospore and exospore formers. This diversity would likely be increased if we were to include sporulation processes in the Gram-negative spore formers. Spore formers have great potential in applied research. They have been used for many years as biodosimeters and as natural insecticides, exploited in the industrial production of enzymes, antibiotics, used as probiotics and, more, exploited as possible vectors for drug delivery, vaccine antigens and other immunomodulating molecules. This report describes these and other aspects of current fundamental and applied spore research that were presented at European Spores Conference held in Smolenice Castle, Slovakia, June 2004. [source] Tn5 as a model for understanding DNA transpositionMOLECULAR MICROBIOLOGY, Issue 5 2003William S. Reznikoff Summary Tn5 is an excellent model system for understanding the molecular basis of DNA-mediated transposition. Mechanistic information has come from genetic and biochemical investigations of the transposase and its interactions with the recognition DNA sequences at the ends of the transposon. More recently, molecular structure analyses of catalytically active transposase; transposon DNA complexes have provided us with unprecedented insights into this transposition system. Transposase initiates transposition by forming a dimeric transposase, transposon DNA complex. In the context of this complex, the transposase then catalyses four phosphoryl transfer reactions (DNA nicking, DNA hairpin formation, hairpin resolution and strand transfer into target DNA) resulting in the integration of the transposon into its new DNA site. The studies that elucidated these steps also provided important insights into the integration of retroviral genomes into host DNA and the immune system V(D)J joining process. This review will describe the structures and steps involved in Tn5 transposition and point out a biologically important although surprising characteristic of the wild-type Tn5 transposase. Transposase is a very inactive protein. An inactive transposase protein ensures the survival of the host and thus the survival of Tn5. [source] Cellular configuration of single octopamine neurons in DrosophilaTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 12 2010Sebastian Busch Abstract Individual median octopamine neurons in the insect central nervous system serve as an excellent model system for comparative neuroanatomy of single identified cells. The median octopamine cluster of the subesophageal ganglion consists of defined sets of paired and unpaired interneurons, which supply the brain and subesophageal ganglion with extensive ramifications. The developmental program underlying the complex cellular network is unknown. Here we map the segmental location and developmental origins of individual octopamine neurons in the Drosophila subesophageal ganglion. We demonstrate that two sets of unpaired median neurons, located in the mandibular and maxillary segments, exhibit the same projection patterns in the brain. Furthermore, we show that the paired and unpaired neurons belong to distinct lineages. Interspecies comparison of median neurons revealed that many individual octopamine neurons in different species project to equivalent target regions. Such identified neurons with similar morphology can derive from distinct lineages in different species (i.e., paired and unpaired neurons). J. Comp. Neurol. 518:2355,2364, 2010. © 2010 Wiley-Liss, Inc. [source] A systems biology investigation of the MEP/terpenoid and shikimate/phenylpropanoid pathways points to multiple levels of metabolic control in sweet basil glandular trichomesTHE PLANT JOURNAL, Issue 3 2008Zhengzhi Xie Summary The glandular trichome is an excellent model system for investigating plant metabolic processes and their regulation within a single cell type. We utilized a proteomics-based approach with isolated trichomes of four different sweet basil (Ocimum basilicum L.) lines possessing very different metabolite profiles to clarify the regulation of metabolism in this single cell type. Significant differences in the distribution and accumulation of the 881 highly abundant and non-redundant protein entries demonstrated that although the proteomes of the glandular trichomes of the four basil lines shared many similarities they were also each quite distinct. Correspondence between proteomic, expressed sequence tag, and metabolic profiling data demonstrated that differential gene expression at major metabolic branch points appears to be responsible for controlling the overall production of phenylpropanoid versus terpenoid constituents in the glandular trichomes of the different basil lines. In contrast, post-transcriptional and post-translational regulation of some enzymes appears to contribute significantly to the chemical diversity observed within compound classes for the different basil lines. Differential phosphorylation of enzymes in the 2- C -methyl- d -erythritol 4-phosphate (MEP)/terpenoid and shikimate/phenylpropanoid pathways appears to play an important role in regulating metabolism in this single cell type. Additionally, precursors for different classes of terpenoids, including mono- and sesquiterpenoids, appear to be almost exclusively supplied by the MEP pathway, and not the mevalonate pathway, in basil glandular trichomes. [source] Within-population variation in social strategies characterize the social and mating system of an Australian lizard, Egernia whitiiAUSTRAL ECOLOGY, Issue 8 2009GEOFFREY M. WHILE Abstract The lizard genus Egernia has been suggested as an excellent model system for examining the evolution of sociality as it exhibits considerable diversity in social organization both between and within species. To date the majority of work examining the factors responsible for the evolution of sociality within Egernia has advocated a broad scale approach; identifying the social structure of specific species or populations and comparing the degree of sociality between them. However, we argue that significant advancements could also be gained by examining variation in social strategies within populations. Here we integrate a detailed, 3-year, field-based examination of social spacing and juvenile dispersal with molecular analyses of paternity to determine the social and mating system of a Tasmanian population of White's skink (Egernia whitii). We show that E. whitii live in small stable family groups consisting of an adult male, his female partner(s), as well as juvenile or sub-adults individuals. In addition, while the mating system is characterized by considerable genetic monogamy, extra-pair fertilizations are relatively common, with 34% of litters containing offspring sired by males from outside the social group. We also show that traits related to social organization (social group composition, group size, stability and the level of extra-pair paternity) vary both between and within individuals. We suggest that ecological factors, such as habitat saturation, quality and availability, play a key role in maintaining between individual variation in social strategies, and that examining these individual level processes will allow us to more clearly understand variation in sociality among species. [source] Shell shape and habitat use in the North-west Pacific land snail Mandarina polita from Hahajima, Ogasawara: current adaptation or ghost of species past?BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2007SATOSHI CHIBA The endemic land snail genus Mandarina of the Ogasawara Islands provides an excellent model system to investigate adaptive radiation. Previously, it has been shown that coexisting species of the islands segregate by microhabitat, so that they are either predominantly found on the ground in relatively wet and sheltered sites, dry and exposed sites, or else are arboreal. Moreover, shell morphology correlates with microhabitat, so that species in wet and sheltered sites tend to have high-spired shells with a high aperture, and those in dry and exposed sites tend to have relatively low-spired shells with a wide aperture. We have now found that on Hahajima, Mandarina polita have variable shell morphology, and there is a correlation between morphology and the depth of leaf litter, as well as the presence/absence of other terrestrial species. Specifically, when high-spired terrestrial Mandarina ponderosa is present, M. polita tend to be low-spired and have a large aperture, indicative of character displacement. When M. ponderosa is absent, the shell shape of M. polita is much more variable, the overall spire is higher, individuals are found in deeper litter, and there is a strong correlation between litter depth and spire height. We argue that these patterns are due to local adaptation, but it remains possible that they are an artefact due to the ,ghost of species past'. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 149,159. [source] A Tale of Two Targets: Differential RNA Selectivity of Nucleobase,Aminoglycoside ConjugatesCHEMBIOCHEM, Issue 10 2006Kenneth F. Blount Dr. Aminoglycoside antibiotics are RNA-binding polyamines that can bind with similar affinities to structurally diverse RNA targets. To design new semisynthetic aminoglycosides with improved target selectivity, it is important to understand the energetic and structural basis by which diverse RNA targets recognize similar ligands. It is also imperative to discover how novel aminoglycosides could be rationally designed to have enhanced selectivity for a given target. Two RNA drug targets, the prokaryotic ribosomal A-site and the HIV-1 TAR, provide an excellent model system in which to dissect the issue of target selectivity, in that they each have distinctive interactions with aminoglycosides. We report herein the design, synthesis, and binding activity of novel nucleobase,aminoglycoside conjugates that were engineered to be more selective for the A-site binding pocket. Contrary to the structural design, the conjugates bind the A-site more weakly than does the parent compound and bind the TAR more tightly than the parent compound. This result implies that the two RNA targets differ in their ability to adapt to structurally diverse ligands and thus have inherently different selectivities. This work emphasizes the importance of considering the inherent selectivity traits of the RNA target when engineering new ligands. [source] |