Exotic Fish (exotic + fish)

Distribution by Scientific Domains


Selected Abstracts


Individual, Population, Community, and Ecosystem Consequences of a Fish Invader in New Zealand Streams

CONSERVATION BIOLOGY, Issue 1 2003
Colin R. Townsend
But because invaders can have unexpected indirect effects in food webs, invasion ecologists need to integrate processes at the population level and other ecological levels. I describe a series of coordinated studies in New Zealand streams that address the effect of an exotic fish on individual behavior, population, community, and ecosystem patterns. Such case studies are important as an aid to the formulation of policy about invasions that are especially likely to become problematic. At the individual level, grazing invertebrates showed changes in behavior as a result of the introduction of brown trout ( Salmo trutta), a predator that exerts a very different selection pressure than do native fish. At the population level, trout have replaced nonmigratory galaxiid fish in some streams but not others, and have affected the distributions of crayfish and other large invertebrates. At the community level, trout have suppressed grazing pressure from invertebrates and are thus responsible for enhancing algal biomass and changing algal species composition. Finally, at the ecosystem level, essentially all annual production of invertebrates is consumed by trout ( but not by galaxiids), and algal primary productivity is six times higher in a trout stream. This leads, in turn, to an increased flux of nutrients from the water to the benthic community. The trout invasion has led to strong top-down control of community structure and ecosystem functioning via its effects on individual behavior and population distribution and abundance. Particular physiological, behavioral, and demographic traits of invaders can lead to profound ecosystem consequences that managers need to take into account. Resumen: Para desarrollar procedimientos y políticas de manejo efectivos a menudo será necesario conocer la biología de la población de especies invasoras. Sin embargo, debido a que los invasores pueden tener efectos indirectos inesperados en las redes alimenticias, ecólogos de invasión necesitan integrar procesos en la población y otros niveles ecológicos. Describo una serie de estudios coordinados en arroyos de Nueva Zelanda que enfocan el impacto de un pez exótico sobre los patrones de comportamiento individual, de la población, la comunidad y el ecosistema. Tales estudios de caso son importantes como un auxiliar para la formulación de políticas sobre invasiones que pueden ser especialmente problemáticas. Al nivel individual, los invertebrados que pastorean mostraron cambios de conducta como resultado de la introducción de la trucha café ( Salmo trutta), un depredador que ejerce una presión de selección muy diferente a la de los peces nativos. En el nivel de población, las truchas han reemplazado a peces galaxídos no migratorios en algunos arroyos pero no en otros y han afectado las distribuciones de cangrejos de río y otros invertebrados mayores. Al nivel de comunidad, las truchas han suprimido la presión de pastoreo por invertebrados y por lo tanto son responsables del incremento de la biomasa de algas y del cambio en la composición de especies de algas. Finalmente, a nivel de ecosistema, la producción anual de invertebrados esencialmente es consumida por las truchas ( pero no por galaxídos), y la productividad primaria de algas es seis veces mayor en arroyos con truchas. A su vez, esto conduce a incrementos en el flujo de nutrientes del agua hacia la comunidad béntica. La invasión de truchas ha conducido a un fuerte control de arriba hacia abajo de la estructura de la comunidad y del funcionamiento del ecosistema por medio de sus efectos sobre la conducta individual y la distribución y abundancia de la población. Las características fisiológicas, de conducta y demográficas particulares de los invasores pueden llevar a consecuencias profundas en los ecosistemas que los administradores necesitan tomar en consideración. [source]


Hydrological disturbance benefits a native fish at the expense of an exotic fish

JOURNAL OF APPLIED ECOLOGY, Issue 5 2006
F. LEPRIEUR
Summary 1Some native fish in New Zealand do not coexist with introduced salmonids. Previous studies of disjunct distributions of exotic brown trout Salmo trutta and native galaxiids demonstrated native extirpation except where major waterfalls prevented upstream migration of trout. In the Manuherikia River system, we predicted that water abstraction might be a further factor controlling the spatial distribution of both the invader and a native fish. 2We applied multiple discriminant function analyses to test for differences in environmental conditions (catchment and instream scales) at sites with roundhead galaxias Galaxias anomalus and brown trout in sympatry and allopatry. We then used a supervised artificial neural network (ANN) to predict the presence,absence of G. anomalus and brown trout (135 sites). The quantification of contributions of environmental variables to ANN models allowed us to identify factors controlling their spatial distribution. 3Brown trout can reach most locations in the Manuherikia catchment, and often occur upstream of G. anomalus. Their largely disjunct distributions in this river are mediated by water abstraction for irrigation, together with pool habitat availability and valley slope. Trout are more susceptible than the native fish to stresses associated with low flows, and seem to be prevented from eliminating galaxiid populations from sites in low gradient streams where there is a high level of water abstraction. 4Synthesis and applications. In contrast to many reports in the literature, our results show that hydrological disturbance associated with human activities benefits a native fish at the expense of an exotic in the Manuherikia River, New Zealand. Water abstraction is also known to have negative impacts on native galaxiids, therefore we recommend restoring natural low flows to maintain sustainable habitats for native galaxiids, implementing artificial barriers in selected tributaries to limit trout predation on native fish, and removing trout upstream. [source]


Legislation and the capacity for rapid-response management of nonindigenous species of fish in contiguous waters of Canada and the USA

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 3 2009
Vernon G. Thomas
Abstract 1.The provision of Canadian and US hard, enforceable, law to authorize rapid response management of nonindigenous aquatic species originating from aquaculture, live fish sales, bait fish, and the pet trade was analysed at the provincial/state levels of government for the Atlantic, Laurentian Great Lakes, and Pacific regions of North America. 2.No federal legal capacity for rapid response management exists in either country. US state legislation is generally better developed than Canadian provincial laws to manage the exotic fish trade. However, much discrepancy exists among provincial and state law regarding provisions to restrict or prohibit potentially harmful species. Aquaculture and baitfish use is generally better regulated than live fish markets and the pet fish trade in both countries. Only the state of Maine has laws authorizing rapid-response management to control escaped exotic fish. 3.Most species of nonindigenous fish arise from the aquarium, pet, and baitfish trades, and development of improved legislation containing provisions for rapid response management of escapees is warranted in all states and provinces. 4.It is recommended that Canada amends the Fisheries Act to create the appropriate enabling legislation to monitor, assess risk, and deploy rapid response management of nonindigenous aquatic species, including fish that enter federal fresh and sea waters. Two recently-introduced US Bills, S. 725 and H.R. 1350, with their explicit measures for early detection and fast action response, could, if passed into law, create provisions to control introduced nuisance species throughout North American waters. They would also create precedents for states and provinces that have most jurisdiction over aquaculture and trade in exotic fish to amend and align their laws in a complementary manner. Copyright © 2008 John Wiley & Sons, Ltd. [source]


The effect of the sampling scale on zooplankton community assessment and its implications for the conservation of temporary ponds in south-west Spain

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2007
Khalid Fahd
Abstract 1.The zooplankton (rotifer and microcrustacean) assemblages of temporary ponds in the Doñana National Park (south-west Spain) have been compared in two surveys of contrasting scales that resulted in the same number of samples: an extensive survey of 36 ponds sampled in May 1998 (or widespread survey) and a survey of nine ponds sampled four times over 2 years (or cumulative survey). 2.The total number of microcrustacean and rotifer taxa was larger in the cumulative survey (43 and 41 taxa, respectively) than in the widespread survey (39 and 34, respectively). Crustacean assemblages became less alike throughout the cumulative survey. 3.The presence of invertebrates (Coleoptera, Odonata, Heteroptera and crayfish) and aquatic vertebrates (fish and salamanders) was recorded as an estimate of potential predator impact on zooplankton. Several pond features (water depth, conductivity, pH, chlorophyll a concentration, distance to the nearest permanent pond and to the marsh) were also measured in both surveys. 4.A combination of these environmental factors was more strongly related to the similarity matrices derived from the zooplankton assemblages of the cumulative survey (Rho=0.7) than to those of the widespread survey (Rho<0.4). The distance of ponds to the marsh was an important factor in explaining this correlation as well as the strongest factor in the ordination of crustacean assemblages following a CCA. 5.Predation by exotic fish in long-hydroperiod ponds where overflow drains to the nearby marsh (fish source) is the mechanism likely to explain the changes in crustacean composition recorded in the cumulative survey. 6.The cumulative survey was more suitable for the study of zooplankton diversity as it rendered a higher number of taxa and gave more insight into the mechanisms that explain taxon richness. Thus, conservation strategies in temporary habitats require a scale of observation that includes long temporal changes. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Two hundred years of a diverse Daphnia community in Lake Naivasha (Kenya): effects of natural and human-induced environmental changes

FRESHWATER BIOLOGY, Issue 8 2004
Joachim Mergeay
Summary 1. We used fossil diapausing eggs extracted from 210Pb-dated sediment cores to reconstruct historical changes in the Daphnia community of Lake Naivasha, a climate-sensitive lake in Kenya which over the past 200 years has experienced a series of well-documented natural and anthropogenic environmental changes. 2. Contiguous sampling and analysis of four cores yielded ephippial capsules of eight Daphnia species. Only two of these had been recorded previously in live collections from Lake Naivasha, and one species is new to science. The four more common species (Daphnia barbata, D. laevis, D. magna, and D. pulex) show striking differences in abundance patterns and population dynamics through time. Four other species (D. lumholtzi, D. curvirostris, D. longispina s.l., and Daphnia sp. nov. type Limuru.) appear to have been present only occasionally. Nevertheless, between 1895 and 1915 seven species of Daphnia inhabited Lake Naivasha simultaneously. 3. Despite considerable natural environmental change associated with climate-driven lake-level fluctuations, the Daphnia community of Lake Naivasha has been severely affected by human activities over the past century, especially the introduction of exotic fishes and water-quality changes because of agricultural soil erosion. The recent reappearance of large-bodied Daphnia species (D. magna, D. barbata, D. lumholtzi, Daphnia sp. nov. type Limuru) after 20,110 years of absence can be explained by their release from fish predation, following a dramatic increase in turbidity caused by excess clastic sediment input from eroded catchment soils. The small-bodied species D. laevis has fared less well recently, presumably because the benefit of lowered predation pressure is counteracted by more pronounced negative effects of increased turbidity on this species and loss of submerged macrophyte beds which formerly served as predation refuge. 4. Our results suggest that, despite considerable environmental instability and the absence of specialised zooplanktivores, top-down control of fish on large zooplankton is important in Lake Naivasha. Predation pressure from fish has led to clear-cut shifts in local Daphnia species composition, but failed to drive the larger taxa to extinction. [source]


A trial of two trouts: comparing the impacts of rainbow and brown trout on a native galaxiid

ANIMAL CONSERVATION, Issue 4 2010
K. A. Young
Abstract Rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta are the world's two most widespread exotic fishes, dominate the fish communities of most cold-temperate waters in the southern hemisphere and are implicated in the decline and extirpation of native fish species. Here, we provide the first direct comparison of the impacts of rainbow and brown trout on populations of a native fish by quantifying three components of exotic species impact: range, abundance and effect. We surveyed 54 small streams on the island of Chiloé in Chilean Patagonia and found that the rainbow trout has colonized significantly more streams and has a wider geographic range than brown trout. The two species had similar post-yearling abundances in allopatry and sympatry, and their abundances depended similarly on reach-level variation in the physical habitat. The species appeared to have dramatically different effects on native drift-feeding Aplochiton spp., which were virtually absent from streams invaded by brown trout but shared a broad sympatric range with rainbow trout. Within this range, the species' post-yearling abundances varied independently before and after controlling for variation in the physical habitat. In the north of the island, Aplochiton spp. inhabited streams uninvaded by exotic trouts. Our results provide a context for investigating the mechanisms responsible for apparent differences in rainbow and brown trout invasion biology and can help inform conservation strategies for native fishes in Chiloé and elsewhere. [source]