Evolutionary Levels (evolutionary + level)

Distribution by Scientific Domains


Selected Abstracts


Anatomical studies on Sinofranchetia chinensis (Lardizabalaceae) and their systematic significance

BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2005
XIAO-HUI ZHANG
The anatomical structures of the Chinese endemic and monotypic genus Sinofranchetia (Lardizabalaceae) are described. There are reticulate, simple-reticulate, scalariform, simple-scalariform and simple perforations in vessel elements as well as in the fibres in the secondary wood of the roots and the stems. The node is trilacunar. The vascular bundles in the petiole are arranged in a ring. Clustered crystals occur in the parenchymatous cells of stems, petioles and pedicles. Leaf stomata are actinocytic. The nodes of sepals, petals and stamens both in male and female flowers are unilacunar and one-traced. There are three sterile carpels with two to three traces in the male flowers, three fertile carpels with two to three traces, and sometimes three sterile carpels lacking a vascular supply. In morphology, the anther dehiscence mechanism and pollen in the female flowers are the same as in the male flowers, such that the so-called female flowers might be bisexual in morphology. In comparing morphology, the sex of the flowers and the perforations of the vessel elements in Sinofranchetia with Decaisnea and other genera of the Lardizabalaceae, Sinofranchetia is considered a basic group at least as the same evolutionary level in the family as Decaisnea. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 149, 271,281. [source]


The evolutionary history of crustacean segmentation: a fossil-based perspective

EVOLUTION AND DEVELOPMENT, Issue 6 2005
Dieter Waloszek
Summary The evolution of segmentation in Crustacea, that is, the formation of sclerotized and jointed body somites and arrangement of somites into tagmata, is viewed in light of historical traits and functional constraints. The set of Early to Late Cambrian ,Orsten' arthropods have informed our current views of crustacean evolution considerably. These three-dimensionally preserved fossils document ancient morphologies, as opposed to purely hypothetical models and, because of the unusual preservation of larval stages, provide us with unparalleled insight into the morphogenesis of body somites and their structural equipment. The variety of evolutionary levels represented in the ,Orsten' including lobopodians, tardigrades, and pentastomids also allows phylogenetic interpretations far beyond the Crustacea. The ,Orsten' evidence and data from representatives of the Lower Cambrian Chengjiang biota in southwestern China, including phylogenetically earlier forms, form the major source of our morphology-based review of structural and functional developments that led toward the Crustacea. The principal strategy of arthropods is the simultaneous development of head somites, as expressed in a basal "head larva," and a successive addition of postcephalic somites from a preterminal budding zone with progressive maturation of metameric structures. This can be recognized in the developmental patterns of extant and fossil representatives of several euarthropod taxa, particularly crustaceans, trilobites, and chelicerates (at least basally). The development of these taxa points to an early somite-poor and free-living hatching stage. Embryonic development to a late stage within an egg, as occurring in recent onychophorans and certain in-group euarthropods, is regarded as achieved several times convergently. [source]


Did the introduction of maize into Europe provide enemy-free space to Ostrinia nubilalis?

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2010
Parasitism differences between two sibling species of the genus Ostrinia
Abstract We examined whether maize offers enemy-free space (EFS) to its pest Ostrinia nubilalis, and may thereby have contributed to its divergence from the sibling species, Ostrinia scapulalis, feeding mainly on mugwort, when introduced into Europe five centuries ago. We collected Ostrinia larvae on maize (70 populations, 8425 individuals) and mugwort (10 populations, 1184 individuals) and recorded parasitism using both traditional (counting emerging parasitoids) and molecular methods (detection by specific polymerase chain reaction). The main parasitoid was Macrocentrus cingulum (Braconidae). On mugwort, parasitism was twice that on maize, and parasitoid-related mortality was 8 times higher. This suggests that maize affords substantial EFS to Ostrinia feeding on it. The lower Mortality:Infestation ratio in maize suggests that O. nubilalis' immune response might be stronger than that of O. scapulalis. If so, adapting to maize and diverging from O. scapulalis would decrease the impact of parasitism on O. nubilalis at both ecological and evolutionary levels. [source]


Chromosomal rearrangements and genetic structure at different evolutionary levels of the Sorex araneus group

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2008
P. BASSET
Abstract Robertsonian (Rb) fusions received large theoretical support for their role in speciation, but empirical evidence is often lacking. Here, we address the role of Rb rearrangements on the genetic differentiation of the karyotypically diversified group of shrews, Sorex araneus. We compared genetic structure between ,rearranged' and ,common' chromosomes in pairwise comparisons of five karyotypic taxa of the group. Considering all possible comparisons, we found a significantly greater differentiation at rearranged chromosomes, supporting the role of chromosomal rearrangements in the general genetic diversification of this group. Intertaxa structure and distance were larger across rearranged chromosomes for most of the comparisons, although these differences were not significant. This last result could be explained by the large variance observed among microsatellite-based estimates. The differences observed among the pairs of taxa analysed support the role of both the hybrid karyotypic complexity and the level of evolutionary divergence. [source]


The usefulness of amplified fragment length polymorphism markers for taxon discrimination across graduated fine evolutionary levels in Caribbean Anolis lizards

MOLECULAR ECOLOGY, Issue 3 2002
R. Ogden
Abstract Fine-level taxon discrimination is important in biodiversity assessment and ecogeographical research. Genomic markers are often required for studies on closely related taxa, however, most existing mitochondrial and nuclear markers require prior knowledge of the genome and are impractical for use in small conservation projects. This study describes the application of amplified fragment length polymorphism (AFLP) to discriminate at four progressively finer evolutionary levels of Caribbean Anolis lizards from the central Lesser Antilles. AFLP is shown to be a rapid and effective method for discriminating between species. Separation increases with primer pair number and choice of primer combination appears to be noncritical. Initial population-level results show markedly less discriminatory power. A screening technique for the identification of population informative markers combining principal component and principal coordinate analyses is presented and assessed. Subsequent results show selected conspecific AFLP data to be remarkably congruent with those of mitochondrial DNA, microsatellite and morphological markers. The use of AFLP as a low-cost nuclear marker in species-level taxon discrimination is supported, whereas population level application demands further consideration. [source]