Evolutionary Constraints (evolutionary + constraint)

Distribution by Scientific Domains


Selected Abstracts


EVOLUTIONARY CONSTRAINT AND ECOLOGICAL CONSEQUENCES

EVOLUTION, Issue 7 2010
Douglas J. Futuyma
One of the most important shifts in evolutionary biology in the past 50 years is an increased recognition of sluggish evolution and failures to adapt, which seem paradoxical in view of abundant genetic variation and many instances of rapid local adaptation. I review hypotheses of evolutionary constraint (or restraint), and suggest that although constraints on individual characters or character complexes may often reside in the structure or paucity of genetic variation, organism-wide stasis, as described by paleontologists, might better be explained by a hypothesis of ephemeral divergence, according to which the spatial or temporal divergence of populations is often short-lived because of interbreeding with nondivergent populations. Among the many consequences of acknowledging evolutionary constraints, community ecology is being transformed as it takes into account phylogenetic niche conservatism and the strong imprint of deep history. [source]


Evolutionary constraints on structural similarity in orthologs and paralogs,

PROTEIN SCIENCE, Issue 6 2009
Mark E. Peterson
Abstract Although a quantitative relationship between sequence similarity and structural similarity has long been established, little is known about the impact of orthology on the relationship between protein sequence and structure. Among homologs, orthologs (derived by speciation) more frequently have similar functions than paralogs (derived by duplication). Here, we hypothesize that an orthologous pair will tend to exhibit greater structural similarity than a paralogous pair at the same level of sequence similarity. To test this hypothesis, we used 284,459 pairwise structure-based alignments of 12,634 unique domains from SCOP as well as orthology and paralogy assignments from OrthoMCL DB. We divided the comparisons by sequence identity and determined whether the sequence-structure relationship differed between the orthologs and paralogs. We found that at levels of sequence identity between 30 and 70%, orthologous domain pairs indeed tend to be significantly more structurally similar than paralogous pairs at the same level of sequence identity. An even larger difference is found when comparing ligand binding residues instead of whole domains. These differences between orthologs and paralogs are expected to be useful for selecting template structures in comparative modeling and target proteins in structural genomics. [source]


EVOLUTIONARY CONSTRAINT AND ECOLOGICAL CONSEQUENCES

EVOLUTION, Issue 7 2010
Douglas J. Futuyma
One of the most important shifts in evolutionary biology in the past 50 years is an increased recognition of sluggish evolution and failures to adapt, which seem paradoxical in view of abundant genetic variation and many instances of rapid local adaptation. I review hypotheses of evolutionary constraint (or restraint), and suggest that although constraints on individual characters or character complexes may often reside in the structure or paucity of genetic variation, organism-wide stasis, as described by paleontologists, might better be explained by a hypothesis of ephemeral divergence, according to which the spatial or temporal divergence of populations is often short-lived because of interbreeding with nondivergent populations. Among the many consequences of acknowledging evolutionary constraints, community ecology is being transformed as it takes into account phylogenetic niche conservatism and the strong imprint of deep history. [source]


Microevolutionary support for a developmental hourglass: gene expression patterns shape sequence variation and divergence in Drosophila

EVOLUTION AND DEVELOPMENT, Issue 5 2008
Tami Cruickshank
SUMMARY A central goal of evolutionary developmental biology (Evo-Devo) is to synthesize comparative molecular developmental genetics and its description of the dynamic relationship between genotype and phenotype with the microevolutionary processes (mutation, random drift, and selection) of population genetics. To this end, we analyzed sequence variation of five gene classes that act sequentially to shape early embryo development in Drosophila: maternal, gap, pair-rule, segment polarity, and segment identity genes. We found two related patterns: (1) a microevolutionary pattern, wherein relative sequence variation within species is 2- to 3-fold higher for maternal-effect genes than for any other gene class; and, (2) a macroevolutionary pattern, wherein the relative sequence divergence among species for maternal-effect genes is 2- to 4-fold greater than for any other gene class. Both patterns are qualitatively and quantitatively consistent with the predictions of microevolutionary theory. Our findings connect within-species genetic variation to between-species divergence and shed light on the controversy over the existence of a "developmental hourglass," where mid-embryonic stages are more evolutionarily constrained than either earlier or later stages. Because maternal-effect genes experience relaxed selective constraint relative to zygotic-effect genes, they explore a wider mutational and phenotypic space. As a result, early acting maternal-effect genes diverge more widely across taxa and thereby broaden the base of the developmental hourglass. In contrast, later acting zygotic genes are relatively more constrained and limited in their diversification across taxa, narrowing the waist of the developmental hourglass. This pattern is obscured by genes with both maternal and zygotic expression, which experience the strongest evolutionary constraint. [source]


Population differences in behaviour are explained by shared within-population trait correlations

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2010
JONATHAN N. PRUITT
Abstract Correlations in behavioural traits across time, situation and ecological context (i.e. ,behavioural syndromes' or ,personality') have been documented for a variety of behaviours, and in diverse taxa. Perhaps the most controversial inference from the behavioural syndromes literature is that correlated behaviour may act as an evolutionary constraint and evolutionary change in one's behaviour may necessarily involve shifts in others. We test the two predictions of this hypothesis using comparative data from eighteen populations of the socially polymorphic spider, Anelosimus studiosus (Araneae, Theriidae). First, we ask whether geographically distant populations share a common syndrome. Second, we test whether population differences in behaviour are correlated similarly to within-population trait correlations. Our results reveal that populations separated by as much as 36° latitude shared similar syndromes. Furthermore, population differences in behaviour were correlated in the same manner as within-population trait correlations. That is, population divergence tended to be along the same axes as within-population covariance. Together, these results suggest a lack of evolutionary independence in the syndrome's constituent traits. [source]


EVOLUTIONARY CONSTRAINT AND ECOLOGICAL CONSEQUENCES

EVOLUTION, Issue 7 2010
Douglas J. Futuyma
One of the most important shifts in evolutionary biology in the past 50 years is an increased recognition of sluggish evolution and failures to adapt, which seem paradoxical in view of abundant genetic variation and many instances of rapid local adaptation. I review hypotheses of evolutionary constraint (or restraint), and suggest that although constraints on individual characters or character complexes may often reside in the structure or paucity of genetic variation, organism-wide stasis, as described by paleontologists, might better be explained by a hypothesis of ephemeral divergence, according to which the spatial or temporal divergence of populations is often short-lived because of interbreeding with nondivergent populations. Among the many consequences of acknowledging evolutionary constraints, community ecology is being transformed as it takes into account phylogenetic niche conservatism and the strong imprint of deep history. [source]


RECONSTRUCTING PLUMAGE EVOLUTION IN ORIOLES (ICTERUS): REPEATED CONVERGENCE AND REVERSAL IN PATTERNS

EVOLUTION, Issue 6 2000
Kevin E. Omland
Abstract. Several empirical studies suggest that sexually selected characters, including bird plumage, may evolve rapidly and show high levels of convergence and other forms of homoplasy. However, the processes that might generate such convergence have not been explored theoretically. Furthermore, no studies have rigorously addressed this issue using a robust phylogeny and a large number of signal characters. We scored the appearance of 44 adult male plumage characters that varied across New World orioles (Icterus). We mapped the plumage characters onto a molecular phylogeny based on two mitochondrial genes. Reconstructing the evolution of these characters revealed evidence of convergence or reversal in 42 of the 44 plumage characters. No plumage character states are restricted to any groups of species higher than superspecies in the oriole phylogeny. The high frequency of convergence and reversal is reflected in the low overall retention index (RI = 0.66) and the low overall consistency index (CI = 0.28). We found similar results when we mapped plumage changes onto a total evidence tree. Our findings reveal that plumage patterns and colors are highly labile between species of orioles, but highly conserved within the oriole genus. Furthermore, there are at least two overall plumage types that have convergently evolved repeatedly in the three oriole clades. This overall convergence leads to significant conflict between the molecular and plumage data. It is not clear what evolutionary processes lead to this homoplasy in individual characters or convergence in overall pattern. However, evolutionary constraints such as developmental limitations and genetic correlations between characters are likely to play a role. Our results are consistent with the belief that avian plumage and other sexually selected characters may evolve rapidly and may exhibit high homoplasy. The overall convergence in oriole plumage patterns is an interesting evolutionary phenomenon, but it cautions against heavy reliance on plumage characters for constructing phylogenies. [source]


Comparative energy allocation in two sympatric, closely related gobies: the black goby Gobius niger and the grass goby Zosterisessor ophiocephalus

JOURNAL OF FISH BIOLOGY, Issue 2 2007
R. Fiorin
Seasonal energy allocation of lipid reserves into different body tissues was analysed comparatively in two sympatric, closely related gobies: the grass goby Zosterisessor ophiocephalus and the black goby Gobius niger. Lipid reserves were measured in liver, muscle and ovary and compared between the two species within a given sex and seasonal period (reproductive v. non-reproductive). Furthermore, temporal patterns of lipid reserves were investigated in the two species in relation to gonado-somatic and liver-somatic indices, as well as the relationship between size and lipid content. Results showed that the grass goby allocated more lipid reserves in reproduction while the black goby accumulated more reserves in liver and muscle, at a given size, although the temporal patterns of lipid accumulation and depletion were basically similar. Results are discussed in the light of life-history theories, taking into account both adaptation and evolutionary constraints. [source]


Peptide self-aggregation and peptide complementarity as bases for the evolution of peptide receptors: a review

JOURNAL OF MOLECULAR RECOGNITION, Issue 1 2005
Robert S. Root-Bernstein
Abstract This paper reviews the three major theories of peptide receptor evolution: (1) Dwyer's theory that peptide receptors evolved from self-aggregating peptides; (2) Root-Bernstein's theory that peptide receptors evolved from functionally and structurally complementary peptides; and (3) Blalock's theory that receptors evolved from hydropathically complementary sequences encoded in the antisense strand of the DNA encoding each peptide. The evidence to date suggests that the co-yevolution of peptides and their receptors is strongly constrained by one or more of these physicochemically based mechanisms, which argues against a random or frozen accident' model. The data also suggest that structure and function are integrally related from the earliest steps of receptor,ligand evolution so that peptide functionality is non-random and highly conserved in its origin. The result is a molecular paleontology' that reveals the evolutionary constraints that shaped the interaction of structure and function. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Variation of haplotype distributions of two genomic regions of Citrus tristeza virus populations from eastern Spain

MOLECULAR ECOLOGY, Issue 2 2003
F. D'Urso
Abstract Genetic variation in natural populations of Citrus tristeza virus (CTV) was studied using haplotypes detected by single-strand conformation polymorphism (SSCP) analysis of two genomic regions (p20 gene and segment A, located in ORF1a). Analysis of 254 samples from 125 trees, collected at 12 different sites, yielded 8 different haplotypes for p20 and 5 for segment A. The most frequent haplotype of p20 was predominant at all sites, but several sites differed in the predominance of segment A haplotypes. At most sites, the homozygosity observed for the p20 gene tended to be higher than expected in a neutral evolution, whereas the opposite was true for segment A. Comparison of the populations at different sites showed that 44 of the 66 possible population pairs were genetically distinct for segment A, but only six pairs differed for the p20 gene. Analysis of molecular variance grouping trees by site, scion variety, rootstock or age, showed that variation in segment A was significantly affected by site, tree age and rootstock, and that variation between trees in each group and within trees was even more important. In contrast, variation in p20 was affected only by site and rootstock, each factor contributing to < 2% of the variation. The data suggest that sequence variations in segment A must be functionally less important and that it has less evolutionary constraints than p20. Detection of different haplotypes in neighbour trees or in samples from the same tree may help explain part of the variability observed in CTV symptom expression. [source]


Pulsational and evolutionary analysis of the double-mode RR Lyrae star BS Com

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
I. Dékány
ABSTRACT We derive the basic physical parameters of the field double-mode RR Lyrae star BS Com from its observed periods and the requirement of consistency between the pulsational and evolutionary constraints. By using the current solar-scaled horizontal branch evolutionary models of Pietrinferni et al. and our linear non-adiabatic purely radiative pulsational models, we get M/M,= 0.698 ± 0.004, log(L/L,) = 1.712 ± 0.005, Teff= 6840 ± 14 K, [Fe/H]=,1.67 ± 0.01, where the errors are standard deviations assuming uniform age distribution along the full range of uncertainty in age. The last two parameters are in a good agreement with the ones derived from the observed BVIC colours and the updated atlas9 stellar atmosphere models. We get Teff= 6842 ± 10 K, [Fe/H]=,1.58 ± 0.11, where the errors are purely statistical ones. It is remarkable that the derived parameters are nearly independent of stellar age at early evolutionary stages. Later stages, corresponding to the evolution towards the asymptotic giant branch, are most probably excluded because the required high temperatures are less likely to satisfy the constraints posed by the colours. We also show that our conclusions are only weakly sensitive to non-linear period shifts predicted by current hydrodynamical models. [source]


An emerging consensus for the structure of EmrE

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 2 2009
Vladimir M. Korkhov
The archetypical member of the small multidrug-resistance family is EmrE, a multidrug transporter that extrudes toxic polyaromatic cations from the cell coupled to the inward movement of protons down a concentration gradient. The architecture of EmrE was first defined from the analysis of two-dimensional crystals by cryoelectron microscopy (cryo-EM), which showed that EmrE was an unusual asymmetric dimer formed from a bundle of eight ,-helices. The most favoured interpretation of the structure was that the monomers were oriented in opposite orientations in the membrane in an antiparallel orientation. A model was subsequently built based upon the cryo-EM data and evolutionary constraints and this model was consistent with mutagenic data indicating which amino-acid residues were important for substrate binding and transport. Two X-ray structures that differed significantly from the cryo-EM structure were subsequently retracted owing to a data-analysis error. However, the revised X-ray structure with substrate bound is extremely similar to the model built from the cryo-EM structure (r.m.s.d. of 1.4,Ĺ), suggesting that the proposed antiparallel orientation of the monomers is indeed correct; this represents a new structural paradigm in membrane-protein structures. The vast majority of mutagenic and biochemical data corroborate this structure, although cross-linking studies and recent EPR data apparently support a model of EmrE that contains parallel dimers. [source]


Determinants of assemblage structure in Neotropical dry forest lizards

AUSTRAL ECOLOGY, Issue 1 2009
FERNANDA De PINHO WERNECK
Abstract We investigated the structure of a lizard assemblage from Seasonally Dry Tropical Forest enclaves in the Brazilian Cerrado biome, by testing the roles of ecological and historical components. We analysed data from 469 individuals, belonging to 18 lizard species, sampled by a combination of pitfall, funnel and glue traps, as well as by haphazard sampling. Null model analyses and Canonical Phylogenetic Ordination analysis, coupled with Monte Carlo simulations, revealed lack of both ecological and phylogenetic structure in microhabitat use. Conversely, these analyses revealed a mean overlap in diet composition significantly smaller than expected by chance and significant historical structure. Structure in diet composition was due to phylogenetic effects corresponding to the most basal divergence of the squamate phylogeny (Iguania/Scleroglossa) and the clades Teiidae and Gymnophthalmidae. Among lizards, evolutionary constraints on microhabitat use appear less than on prey use, suggesting that the availability of historically preferred prey types moderates microhabitat selection. The lack of structure in microhabitat use suggests absence of competitive interactions on the spatial component. On the other hand, food preferences have a deep historical basis and do not reflect current competitive interactions. [source]